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Başkent University

Date:



iv



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name, Last Name: ÇİĞDEM YERLİ
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ABSTRACT

MARKOV-CHAIN MODULATED IMPLIED LIQUIDITY: MODELING AND
ESTIMATION

Yerli, Çiğdem

Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Sevtap Kestel

Co-Supervisor : Assoc. Prof. Dr. Zehra Ekşi-Altay

May 2023, 86 pages

This thesis presents a methodology for modeling the implied liquidity which is in-
troduced through the Conic Finance theory, and considered a proxy for the market
liquidity level. We propose a partial information setting in which the dynamics of
implied liquidity, representing the noisy information on the unobserved true market
liquidity, follow a continuous-time Markov-chain modulated exponential Ornstein-
Uhlenbeck process. Model inference requires the filtering of the unobserved states
of the true market liquidity, as well as the estimation of the unknown model param-
eters. We address the inference problem by the EM algorithm. The expectation step
of the algorithm requires the derivation of finite dimensional filters for the quanti-
ties present in the likelihood function. To this end, we first review the existing EM
algorithm for the OU process and provide detailed proofs. The application of the al-
gorithm in practice needs discretizing the resulting filters. In order to avoid numerical
issues and make the algorithm to function, we introduce filters that have a continuous
dependence on the observations. The corresponding filters are known as robust fil-
ters. Instead of directly discretizing continuous time filters, we discretize the robust
filters that help us to work under the discrete time setting and also enable us to obtain
the variance estimate of the model within the EM algorithm. We evaluate the perfor-
mance of the algorithm and compare it to existing alternatives in the literature using
an extensive simulation study. The performance evaluation is based on the sensitivity
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to changes in step size, drift, and volatility parameters. This step is crucial for refin-
ing the methods and establishing a connection between theory and practice. Once the
algorithm is tested with simulated data, we apply the proposed model to real world
data. The data set is comprised of implied market liquidity series retrieved from the
S&P 500 option data covering the period from January 2002 to August 2022. Our
application results show that three liquidity regimes can describe the market liquidity
level: high, intermediate and low. The estimation results confirm the effect of the
overall economic environment on the market liquidity.

Keywords: Expectation maximization (EM) algorithm, hidden Markov models,
Ornstein-Uhlenbeck processes, robust filters, implied liquidity
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ÖZ

MARKOV ZİNCİRİ MODÜLASYONLU ZIMNİ LİKİDİTE: MODELLEME VE
TAHMİN

Yerli, Çiğdem

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Sevtap Kestel

Ortak Tez Yöneticisi : Doç. Dr. Zehra Ekşi-Altay

Mayıs 2023, 86 sayfa

Bu tez, Konik Finans teorisi aracılığıyla tanıtılan ve piyasa likidite düzeyi için bir
temsil olarak kabul edilen zımni likiditeyi modellemek için bir metodoloji sunmak-
tadır. Gözlemlenemeyen gerçek piyasa likiditesine ilişkin gürültülü bilgileri temsil
eden zımni likidite dinamiklerinin, sürekli zamanlı Markov zinciri modülasyonlu üs-
tel Ornstein-Uhlenbeck sürecini takip ettiği, bilginin kismi olduğu bir çerçeve öne-
rilmektedir. Model çıkarımı, gerçek piyasa likiditesinin gözlemlenmemiş durumları-
nın filtrelenmesini ve ayrıca bilinmeyen model parametrelerinin tahmin edilmesini
gerektirir. Çıkarım problemi EM algoritması ile ele alınmaktadır. Algoritmanın bek-
lenti adımı, olabilirlik fonksiyonunda bulunan nicelikler için sonlu boyutlu filtrelerin
türetilmesini gerektirir. Bu amaçla, öncelikle OU süreci için mevcut EM algoritma-
sını incelenerek ayrıntılı ispatları sunulmaktadır. Algoritmanın pratik uygulaması sı-
rasında, ortaya çıkan filtrelerin ayrıklaştırılması gerekmektedir. Sayısal sorunlardan
kaçınmak ve algoritmanın çalışmasını sağlamak için gözlemlere sürekli bağlı olan
filtreleri tanıtılmaktadır. Karşılık gelen filtreler sağlam (robust) filtreler olarak bilinir.
Sürekli zaman filtrelerini doğrudan ayrıklaştırmak yerine, ayrık zaman ayarı altında
çalışmamıza yardımcı olan ve aynı zamanda modelin varyans tahminini EM algorit-
ması içinde elde etmemizi sağlayan sağlam filtreleri ayrıklaştırılmaktadır. Kapsamlı
bir simülasyon çalışması kullanarak algoritmanın performansını değerlendirilmekte
ve literatürdeki mevcut alternatiflerle karşılaştırılmaktadir. Performans değerlendir-
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mesi, adım boyutu, sapma ve oynaklık parametrelerindeki değişikliklere olan duyar-
lılığı temel alır. Bu adım, yöntemleri geliştirmek ve teori ile pratik arasında bir bağ-
lantı kurmak için çok önemlidir. Algoritma simüle edilmiş verilerle test edildikten
sonra, önerdiğimiz modeli gerçek verilere uygulanmaktadır. Veri seti, 1 Ocak 2002 - 1
Ağustos 2022 dönemini kapsayan S&P 500 opsiyon verilerinden alınan zımni piyasa
likidite serilerinden oluşmaktadır. Uygulama sonuçları, üç likidite rejiminin piyasa
likidite seviyesini tanımlayabildiğini göstermektedir: yüksek, orta ve düşük.Tahmin
sonuçları, genel ekonomik ortamın piyasa likiditesi üzerindeki etkisini doğrulamak-
tadır.

Anahtar Kelimeler: Beklenti maksimizasyonu (EM) algoritması, saklı Markov mo-
delleri, Ornstein-Uhlenbeck süreçi, sağlam filtreler, zımni likidite
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Market liquidity has crucial importance in the smooth functioning of financial mar-

kets. The liquidity, or lack thereof, in business sectors can greatly influence the fi-

nancial system and overall economy, disrupting their normal operations. The Russian

financial crisis and the Long-Term Capital Management crash in 1998 are examples

of how a minor disruption in liquidity can have a significant and unanticipated impact

on the market. More recently, the financial crisis of 2008 highlighted the importance

of liquidity in financial markets, once more bringing the issue to the forefront.

There is no single, universally accepted definition of liquidity; instead, different per-

spectives and interpretations exist. Various economists and financial experts have

offered different perspectives on what constitutes liquidity and how it should be mea-

sured. According to [43], any asset that can be bought or sold in large quantities

quickly with minimal effect on its price is considered liquid in the market. Demsetz

(1968) [25] defines market liquidity as the price adjustments that market actors must

make to execute a trade. This definition suggests that in liquid markets, participants

can execute trades without experiencing significant transaction costs or price conces-

sions. Shen and Starr (2002) [56] define liquidity in financial markets as the capacity

to efficiently handle the influx and outflow of orders for buying and selling, while [31]

defines a market as liquid if trades can be carried out without incurring any transac-

tion costs, drawing on definitions from [30]. In [15], liquidity refers to the ease and

cost efficiency of executing large volume trades for a given asset. Overall, liquidity
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is related to a market’s ability to handle large transaction volumes without causing

significant price movements or transaction costs in a short time period.

The lack of a precise definition of market liquidity makes measuring liquidity com-

plex task. In the literature, the liquidity measures are categorized under three main

groups: volume based, transaction cost based, and price impact based [54], which

are essential in defining liquidity and can be measured through various dimensions.

Oesterhelweg and Schiereck (1993) [49] discuss the dimensions of liquidity, and

[54] identify five dimensions: breadth, depth, immediacy, resilience, and tightness.

Breadth refers to the amount and size of orders around equilibrium prices, while depth

concerns the number of orders at those prices. Immediacy pertains to how quickly or-

ders can be executed, while resilience refers to the market’s ability to bounce back

from unforeseen events. Tightness is associated with the level of transaction costs.

The concept of market liquidity encompasses many dimensions, making it challeng-

ing to capture with a single statistic. Instead, there are various methods and metrics to

measure liquidity, each with advantages and limitations. Bid-ask spread as a transac-

tion cost based approach is the most commonly used indicator to evaluate the level of

market liquidity (see [24], [57], [22], and [4]). Despite its usefulness, many models

based on bid-ask spreads do not fully account for the observed magnitude of spreads

in financial markets. This was particularly evident after the 2008 financial crisis,

during which bid-ask spreads for many assets remained consistently high, surpass-

ing what could be explained by transaction costs alone [50]. Furthermore, bid-ask

spread can fluctuate in response to volatility or changes in the spot price of an asset,

regardless of whether the underlying liquidity of the asset has actually changed [20].

Another approach related with bid and ask prices is based on the theory of Conic

Finance, and is first introduced by [12] and is further developed by [47]. The founda-

tion of this approach is that there are two prices in the market: ask price to buy from

the market and bid price to sell to the market. In this perspective, as a counterparty,

the market executes all eligible trades, determined by acceptability indices derived

from Artzner’s theory of coherent risk measures [3]. In the Conic Finance theory,

market liquidity level is modeled through a market stress parameter that matches the

market bid and ask prices with the theoretical bid and ask prices calculated based on

the acceptability indices assigned by the market. These indices are derived from the
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deviation of the risk-neutral pricing measure. Corcuera et al. (2012) [20] introduce an

implied liquidity parameter as a unitless quantity to facilitate liquidity comparisons

across different assets and markets. Calculating it for different strikes and maturities

results in implied liquidity surfaces. Then, the authors analyzed its behavior over

time, specifically for ATM calls on US indices. It is observed that during the 2008

financial crisis, the implied liquidity parameter increased, indicating a significant re-

duction in liquidity in major vanilla markets. It is also noticed that implied liquidity

is mean-reverting and resembles stochastic volatility in behavior. In this regard, [1]

model the implied liquidity with different stochastic models: CIR, Vasicek, and CEV

models. They assess the model sensitivity of stochastic implied liquidity and examine

the effect of the financial crisis on implied liquidity by considering the pre- and post-

crisis periods. The authors suggested a stochastic, regime switching, mean-reverting

process for modeling liquidity. Leippold and Schärer (2017) [44] develop a stochastic

liquidity model, extending an existing model by [47] that assumes constant liquidity

over time. Their model enables the replication of the term and skew structures of

bid-ask spreads commonly observed in options markets. They provide a method for

implementing the stochastic liquidity model using multidimensional binomial trees

and calibrate it to call and put options on the S&P 500. The stochastic liquidity mod-

eling approach is believed to be highly valuable in structured asset pricing, hedging

activities, and risk management.

1.2 Motivation and contribution

Albrecher et al. (2013) [1] puts forward that their analysis of implied liquidity may

lead to the use of a stochastic, regime-switching mean-reverting process for model-

ing liquidity. Based on this observation, we fit a Markov modulated mean-reverting

model to the observed implied liquidity series. Note that, the objective of this thesis

is not to extend the standard Conic Finance Theory to the stochastic/dynamic set-

ting. Following [1], we consider our efforts as a first step towards stochastic liquidity

modeling.

This research proposes a new method for modeling the implied liquidity using a con-

tinuous time Markov chain modulated exponential Ornstein-Uhlenbeck (OU) process
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under partial information setting. The estimation methodology is based on non-linear

filtering tools and the EM algorithm. The dynamics of market liquidity is examined

and economic motivations are provided through the application of the model to real

market data. Elliott et al. (1999) [28] introduces the filtering and parameter estima-

tion for the Markov chain modulated OU process. Our novel contribution is that, for

the same setting, we provide an EM algorithm methodology with robust filtering and

discretization in the sense of [42]. Robust filters are required to avoid numerical is-

sues that may arise in applications with discrete observations. That also allows us to

estimate the unknown noise variance within the algorithm.

The motivation is to use a continuous time hidden Markov chain modulated exponen-

tial OU process is explained below.

It is common to observe structural regime changes in both macroeconomic envi-

ronment and financial markets. Market liquidity, naturally, is affected by economic

regimes like quantitative easing and tightening, or financial market regimes like

bullish and bearish conditions. Moreover, market liquidity has a "self-stabilizing

effect" in either good or poor economic conditions as noted by [8, 7]. As mentioned

previously, [20] and [1] observed the mean-reverting behavior of the implied

liquidity.

We consider a partial information setting because hidden variables, such as expecta-

tions, information, risk aversion, and beliefs, are prevalent in economies, making it

difficult to fully observe the true state of the underlying market liquidity level. Know-

ing the true state is crucial for decision making in the economy. There are several

ways to address this problem. One approach is to focus on measurable variables, but

this can lead to high systematic errors and high variance in forecasts, as the effects of

changes in economic states on observable variables are ignored. Another approach is

to estimate latent variables, for which statistical methods such as principal component

analysis and factor analysis are commonly used. Hidden Markov model (HMM) is

another approach to uncover hidden states from observable market data. Even if the

regime switches are assumed to represent economic decisions that are observable to

market agents, the impact of these decisions may come earlier or later than the actual

time the decision is made. Thus, these hidden changes can be captured by a HMM.
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Finally, the proposed model ensures the non-negativity of the implied liquidity whose

construction requires the non-negative results as the ask price is always higher than

the bid price. In the extreme case, when the bid price and ask price are equal, the

implied liquidity is equal to zero, and the two price model becomes a one price model.

We suggest a hidden Markov chain modulated exponential OU process to capture

the positivity, mean reversion and regime switching behavior on observed implied

liquidity series.

There are several studies in the literature that use the hidden Markov model approach

to examine market liquidity regimes. For example, [32] study the commonalities in

market liquidity with the goal of identifying broad patterns that can be used to monitor

systemwide liquidity conditions. They employ 33 time series daily data covering four

asset classes, namely equities, corporate bonds, oil futures and volatility index futures

over the period over the period from 2004 to 2014. Then they apply Bayesian hid-

den Markov chain models to capture the latent structure of each series and assess the

liquidity dynamics at the systemwide level. This approach helps to normalize local

liquidity conditions, making them directly comparable across markets and order flow

conditions, and allows for the identification of sudden changes in price impact that

are driven by underlying liquidity states. They conclude that there are three liquidity

regimes: low, intermediate, and high. Tenyakov et al. (2016) [58] focus on modeling

the risk arising from market and funding liquidity by examining the joint dynamics

of three monthly time series: the Treasury-Eurodollar spread, the VIX, and a metric

derived from the S&P 500 spread over the period from 1998 to 2013. To capture

liquidity levels, the authors use a discrete time multivariate HMM OU model pro-

cess expressed in matrix representation and conclude that 2-state model is sufficient.

Chen et al. (2020) [11] examine the relationship between funding liquidity and mar-

ket liquidity and how it varies over time. The researchers use a discrete time Markov

regime switching model to analyze the dynamic patterns of financial time series that

is a comprehensive US TRACE data set from 2004 to 2013. The study concludes

that funding liquidity and corporate bond market liquidity are interconnected, their

influence on each other is heavily dependent on the economic regime changes, and

two regimes are sufficient to explain the funding liquidity and market liquidity and

understand their relationship. Finally, Gu et al. (2021) [38] propose a hybrid mul-
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tivariate discrete time HMM approach to capture the regime switching dynamics of

four financial market indicators that are deemed to drive the main characteristics of

liquidity risk: Treasury-Euro Dollar rate spread, US dollar index, volatility index and

S&P 500 metric over the period from 1998 to 2018. The approach involves an on-

line system that processes observed indicators and interfaces with an advanced alert

mechanism to give appropriate measures. Two stochastic models, namely geometric

Brownian motion and OU process with HMM-modulated parameters are integrated to

capture the evolutions of the four time series and show the sufficiency of two regimes

in explaining the dynamics.

Our aim is to evaluate the market liquidity through the use of implied liquidity as a

proxy for the market liquidity level. Following the idea by [1], we model the implied

liquidity with a continuous time hidden Markov modulated OU process. We assume

that the implied liquidity series provide noisy information on the true market liquidity

level, thus we cannot observe the true liquidity level directly and can only observe the

implied liquidity series. To estimate the unknown parameters in the model, we use

the EM algorithm. The continuous time filters that are required in the expectation

step (E-step) of the algorithm are originally derived in [28]. We introduce the corre-

sponding robust filters of continuous time filters in the sense of [42]. This is a discrete

time setting which provides an explicit approximation of the continuous time filters.

Moreover, working with discretized robust filters help us to introduce the variance

estimate of the model, which is not possible to estimate in the continuous time model

setting. Our data application results show that three liquidity regimes can describe

the market liquidity level reasonably well: high, intermediate and low. Thus, with the

help of our proposed model, we can provide guidance to perspectives of any partici-

pant in the economy such as policy makers, investors who aim to detect, evaluate and

predict the unstable periods in the financial system.

1.3 Structure of the thesis

Chapter 2 gives the review of market liquidity measures with related literature. The

measures are categorized into three main groups: volume based, price impact based

and transaction cost based. Bid-ask spread related measures are generally included
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in the transaction cost based measures although they can be used in other categories.

Implied liquidity, obtained from Conic Finance Theory, is also one of the bid-ask

spread related approaches to evaluate the market liquidity. Thus, we also give brief

information about the implied liquidity.

In Chapter 3, we briefly give mathematical background related with the theory used

in this work. In details, we review the Conic Finance Theory to explain the basics

of the implied liquidity since we use the implied liquidity as a proxy for the market

liquidity level. Then, we recall OU process and its exponential version.

In Chapter 4, we introduce our approach to estimate the unknown parameters in the

Markov chain modulated OU model by using the EM algorithm. First, we give the

notation and setting required to introduce our model. Specifically, we assume that

true market liquidity level is naturally dependent on the macroeconomic environment

and we consider a continuous time Markov modulated model under the partial infor-

mation setting since true market liquidity states cannot be observed directly, we only

observe the implied liquidity series. To make a statistical inference for the hidden

Markov model, we use the Expectation Maximization (EM) algorithm. Accordingly,

we review the EM algorithm for Markov chain modulated OU process given in [28] at

which the proofs are not provided in [28]. For the thesis to be self contained, we pro-

vide them in detail. The implementation of the algorithm needs the filters that depend

on the observations continuously. These filters are known as robust filters [17, 42].

Thus, we derive the robust filters for our framework by following the idea introduced

in [17, 42]. This approach provides a discrete time setting which provides an explicit

approximation of the continuous time filters. Finally, working with discretized robust

filters makes it possible to introduce the variance estimate of the model, which is not

possible to estimate in the continuous time model setting.

In Chapter 5, the performance of algorithms is evaluated and compared. The esti-

mation methodology of the algorithms use two types of filters: discretized robust

filters and discretized continuous time filters. For the simulation study, the contin-

uous time filters are discretized using both Euler and Milstein approaches. As for

robust versions, introduced discretized robust filters are used. The performance of

the algorithms is evaluated based on their sensitivity to changes in step size, drift,
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and volatility parameters. This examination is essential for refining the methods and

establishing a connection between theoretical concepts and their practical implemen-

tation.

In Chapter 6, we provide a real data application under a proposed model setting.

This part aims to evaluate the market liquidity through the use of implied liquidity.

First, we describe the data and explain how to derive it. After applying our proposed

model to the data, we evaluate the results based on in sample and out of sample

results. Specifically, we decide the number of states using Akaike information criteria

(AIC) and Bayesian information criteria (BIC) based on in sample results. In out of

sample testing, we evaluate the performance of the proposed model according to point

forecast and interval forecast results.

Finally, Chapter 7 provides a summary of the main findings and a discussion of po-

tential future studies.

8



CHAPTER 2

REVIEW OF MARKET LIQUIDITY MEASURES

2.1 Introduction

There is no single, universally accepted definition of liquidity, and different per-

spectives and interpretations exist. As mentioned previously, liquidity is related to

a market’s ability to handle large transaction volumes without causing significant

price movements or transaction costs in a short time period. Thus, the definitions

in the literature can be collected under four aspects [34]: time, tightness, depth and

resiliency.

Time dimension is related with the execution of a trade quickly at the current market

price. The immediacy of the trade, or the speed at which trades of a certain size can

be executed with given costs, can be calculated by the waiting time between trades or

or the quantity of trades done in a given period of time. The tightness of the market,

or the ability to purchase and sell a security at nearly the same price at the same time,

can be measured by the difference between the best bid and ask quotes. This aspect

is often viewed as a representation of transaction costs. Depth dimension refers to

the ability to exchange a large amount of a security without significantly impacting

the market price. A market is considered deep if there are a large number of orders

at different prices, so that executing a trade does not significantly change the quoted

price. Resiliency dimension is related with the capability to trade a large volume of

a security without significantly affecting its quoted price. A market is considered to

be resilient if it can handle changes in order volume and respond to new information

or price changes without causing significant price fluctuations. It is a measure of the
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price-volume elasticity of an asset, and reflects the ability to maintain stability in the

face of change. The four dimensions of the liquidity is presented in the Figure 2.1.

Figure 2.1: Dimensions of liquidity [26]

According to [2], market liquidity is a complex concept that cannot be fully repre-

sented by a single measure. As a result, various measures have been developed to

capture different aspects of liquidity, leading to various approaches for categorizing

liquidity measures. [35] categorize liquidity measures into three categories: volume

based, price impact based, and transaction cost based. The volume based measures

evaluate the relationship between price and quantity and the degree of a transaction’s

price impact. The second measures liquidity based on price behavior. The third covers

bid-ask spread and its variants and measures liquidity in terms of transaction costs.

2.1.1 Volume based liquidity measures

Volume based liquidity measures determine the liquidity of securities by the amount

of transactions. A security is considered liquid if it has a high volume of transactions,

meaning that there is a large demand for the security and many trades take their place.

Conversely, a security is considered illiquid if it has a low volume of transactions.

Volume based measures of liquidity, as explained by [54], assess the characteristics

of market breadth and depth through the number of transactions. These measures are
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beneficial in gauging the extent of market activity, with both a high number and large

volume of orders being a good indication. Dealers can easily execute orders without

assuming any significant inventory positions if there is an abundance of orders from

both buyers and sellers, making volume based measures a popular way to assess liq-

uidity. Trading volume and turnover ratio are the metrics in this area that are most

frequently utilized. Trading volume is a simple and direct way of measuring liquid-

ity. It represents the total number of shares that have been traded in a given period by

market makers in their buying and selling activities. It is typically expressed as dollar

trading volume V ol, which is calculated as follows:

V oli =
N∑
j=1

P j
i,n × V j

i,n

where, for a stock i, a time period n and transaction j, P j
i,n is stock price, and V j

i,n is

quantity of the stock.

It is widely used and considered to be an indicator of liquidity, with high trading

volume implying low security illiquidity. However, trading volume has a limitation

in that it can lead to double counting.

Another volume based liquidity metric is the turnover ratio, which is derived by di-

viding the number of traded shares by the total number of shares outstanding. The

formula for this ratio is as follows:

Turnover = (1/N)
N∑

n=1

Vi,n
Souti,n

where, for a stock i, a time period n, Turnover is the turnover ratio, N represents the

number of trading days, Vi,n represents the daily number of shares traded, and Souti,n

represents the daily number of outstanding shares.

Easley and O’Hara (1992) [27] find that trading frequency conveys important market

information and has a significant impact on liquidity. As turnover gives information

about trading frequency, it can be used as an indicator of stock liquidity. Additionally,

turnover ratio is often seen as a superior liquidity measure compared to trading vol-

ume, as it takes into account the market capitalization of stocks [35]. The availability

of monthly and daily data for turnover ratio is an advantage and enables the capture

of liquidity of stocks over a long period of time. For these reasons, turnover ratio is
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frequently used as a proxy for liquidity in studies, e.g., [14] and [48].

Despite its advantages, using volume based measures as liquidity indicators still has

limitations. According to [35], these measures fail to capture how prices change

in response to sudden orders. They are only effective as a beginning point in the

analytical process because they are not derived from theoretical models that describe

market maker behavior and solely capture historical price and volume movements.

2.1.2 Price impact based liquidity measures

Price impact refers to the change in the market price of a security that occurs as a

result of executing an order. Price impact is a measure of liquidity, as it reflects

the ease with which a trade can be executed without significantly affecting the market

price. The larger the price impact, the less liquid the security is considered to be. Price

impact is an important factor to consider for both market participants and researchers,

as it affects the costs and returns associated with trading securities.

The Martin Index serves as a price impact measure, assessing the liquidity of a market

by analyzing the link between trading volume and price movements. A high value

for the Martin Index signifies poor liquidity, meaning that the price deviation in the

observed time period is large compared to the traded volume. The Martin Index is

mainly used to gauge the liquidity of a market as a whole, rather than for specific

assets as stated by [35]. MI is given as:

MI =
N∑
i

(Pi,n − Pi,n−1)
2

Vi,n
,

where Pi,n denotes the stock price and Vi,n is the transaction volume of the stock for

a stock i, and for the day n.

Brunner (1996) [6] introduced a liquidity ratio that represents the average price

change of a transaction over a given time period T . The formula for the ratio is:

LR =

∑T
t |∆Pi,t|
NT

where ∆Pi,t represents the log return of the asset i, and NT is the number of trades

during the time period T . A lower value of this ratio indicates higher liquidity, as it
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shows that the average price change per transaction is smaller. In cases where there

are no trades occurring within the designated time period, the liquidity ratio becomes

undefined. Assigning a value of zero to the ratio would inaccurately imply a high

level of liquidity, which is not appropriate.

The illiquidity measure introduced by [2] is a widely used measure of price impact in

finance literature [37]. The return to volume ratio is a metric that quantifies the rela-

tionship between the average daily price of a stock and its trading volume sensitivity.

The ratio is calculated by averaging the daily impact of stock returnsRi on its volume

Vi over a specified time period. To calculate the illiquidity ratio ILR for stock i, the

formula is as follows:

ILR =
1

K

K∑
i

|∆Ri|
Vi

.

In comparison to other liquidity measures, the illiquidity ratio has some benefits. It

is computed using daily return and volume data, which are easily obtainable, even in

markets with limited transaction data. This enables long-term illiquidity ratio calcula-

tions by researchers, making it useful for analyzing most financial markets, including

those in emerging economies. The ratio captures the relationship between trading vol-

ume and security price movements, converting it into transaction costs. An increase

in trading volume is associated with a lower illiquidity ratio. The value of this ratio’s

ability to accurately assess price impact through its volume component is based on its

correlation with trading volume [45].

Despite its usefulness as a measure of illiquidity, the return to volume ratio has some

limitations. One such limitation is the size bias, where stocks with larger market

capitalization are considered less illiquid simply because of their size. This makes

it difficult to compare the illiquidity ratio among stocks with various market values

[33]. Another limitation is that it fails to consider the impact of trading frequency

on liquidity. This is becoming increasingly important, as trading frequency can sig-

nificantly impact required liquidity premiums. However, the ratio ILR assumes that

trading frequency is similar across stocks, which is not always the case [23]. Thus, it

may not provide a comprehensive picture of liquidity.
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2.1.3 Transaction cost based liquidity measures

Transaction costs are the expenses incurred in the process of executing a trade. These

costs can be divided into two types: explicit costs, which are identifiable and known

before trading, such as order processing fees, taxes, and brokerage fees, and implicit

costs, which are less noticeable but can make up a significant portion of the total trans-

action costs, including the bid-ask spread, the size of the transaction, and the timing

of trade execution, which are less apparent but can make up a significant portion of

the total transaction costs. Spread measures are commonly used to evaluate the cost

of executing trades and the liquidity of a security or market. As the spread decreases,

the implicit trading costs diminish, resulting in higher liquidity. Therefore, there is an

inverse relationship between the spread size and the implicit trading costs. A smaller

spread indicates higher liquidity in the market. There are three primary spread mea-

sures: quoted spread, effective spread and realized spread. The quoted spread refers

to the difference between the quoted ask and bid prices that are provided in the mar-

ket. The effective spread takes into account the actual price of trades and the quoted

spread, while the realized spread reflects the actual difference between the buying and

selling prices of a trade that was executed in the market.

The quoted spread is a measure of the cost of a complete transaction cycle in a finan-

cial market. It is calculated by subtracting the best bid price from the best ask price,

and refers the implicit trading costs of buying and selling a security. A low quoted

spread implies high liquidity in a market, as it means low implicit trading costs for

small transactions. The quoted spread is particularly useful for orders that can be

filled entirely at the best quotes, and it can be viewed as the trading costs for buyers

or the trading profit for sellers. The quoted spread, QS, is:

QS = pa − pb

where pa is for the best ask price and pb is for the best bid price.

Although it is simple to compute, it is less representative of actual round-trip trans-

action costs for two reasons: (1) it assumes a short holding period for the asset, and

(2) it does not consider any information from executed trades [54]. Despite these

limitations, the quoted spread has the advantage of being able to be measured more
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frequently due to the lack of required executed trade information, which can be par-

ticularly useful in markets where trade information is scarce, such as in the case of

illiquid stocks.

The effective spread is a measure of the actual cost of a transaction, taking into ac-

count the actual transaction price. It is calculated by subtracting the midquote Mi at

the time just prior to the transaction from the actual transaction price Pi for a stock

i, and adjusting this difference by an order direction indicator that shows if the trade

was started by the buyer (Di = 1) or the seller (Di = −1). The effective half-spread

is then divided by the midquote to get the relative effective half-spread. This measure

reflects the impact of a transaction on the market price. The effective spread, ES, is

calculated as:

ES = Di ∗ (Pi −Mi).

The effective spread is calculated by taking into account actual prices and is often

averaged over a specified time period, like a day or an hour, using a value-weighted

method. This is done by determining the average of the effective spread, weighted by

the dollar or euro volume of each trade observation.

The realized spread, (RS), is a metric that quantifies the actual revenue earned by

market makers. It is computed by subtracting the price impact of the initial trade over

a fixed time horizon from the effective spread. Market makers are incentivized to

quickly buy and sell assets in order to avoid holding inventory for extended periods

of time, as adverse price movements could result in losses. This means that they may

earn less than the effective spreads, as their profit margins are reduced by the need

to quickly offload inventory. For the asset price Pn and mid-price Mn at time n, the

realized spread, RS, is given as:

RS = 2 ∗ |Pt −Mt|.

Roll (1984) [52] evaluates the appropriate spread by considering the first-order au-

tocorrelation of price changes. This method is efficient and easy to use as it utilizes

readily available market price time series. Roll’s premise is that any price changes

in an efficient market with no trading costs are the result of the disclosure of fresh

information. Roll further assumes that in this market, regardless of prior trades, the
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probability of a trade at the bid price is 50%. The exchange of transaction prices

between bid and ask produces a negative first-order autocovariance of the price dif-

ferences between consecutive transactions in this type of market, where only order

processing contributes to the spread. Roll uses this relationship to derive a straight-

forward spread estimator as given:

S = 2
»
−cov(∆Pt,∆Pt−1).

In order to account for the potential for serial covariance in the market’s chain of

trade initiations, [13] give a modified version of the Roll estimator. This describes the

likelihood that a new trade will be initiated at the same price as the previous trade,

whether at the bid price or the ask price. Based on their findings, they determined that

the possibility of an extension occurring is greater than 50%, particularly when large

market orders involve more than one counterparty, resulting in a single trade being

recorded as multiple sequential trades. Therefore, the article proposed a modified

Roll estimator to address this issue. The modified version is:

S =

√
−cov(∆Pt,∆Pt−1)

π
.

The value of π represents the probability of a trade reversal, meaning the possibility of

a trade occurrence at a different price than the previous trade. A negative first-order

auto covariance of transaction prices means that the changes in transaction prices

over time are negatively correlated, which implies that large changes are followed by

smaller changes and vice versa.

Beber and Pagano (2008) [5] highlight the advantage of using the bid-ask spread,

which is that it provides information on the expected execution price of an order in

a particular market, given the size of the order. However, they also acknowledge

that this measure has a drawback in that it doesn’t consider the impact that placing

an order can have on market conditions, specifically the market price. According to

[5], this is an important limitation of the bid-ask spread and other ex ante liquidity

measures.
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Implied liquidity

In the wake of the recent credit crunch, assessing liquidity risk has become increas-

ingly important for both market participants and regulators, as liquidity tends to dry

up during periods of market turmoil. While the bid-ask spread of financial instru-

ments is a widely used liquidity indicator, the non-linear relationship between volatil-

ity, spot price, and spread is widely acknowledged, as observed in various studies

[20, 1]. This poses a limitation when measuring liquidity solely based on the under-

lying product’s liquidity. To overcome this challenge, the law of two prices offers

an alternative approach to gauge liquidity through the concept of implied liquidity.

Corcuera et al. (2012) [20] propose this concept in the context of the Black-Scholes

model. Implied liquidity gives investors the ability to quantify liquidity levels simi-

larly to how implied volatility enables investors to assess market risk in terms of the

standard deviation of the return distribution. This approach quantifies liquidity risk in

a more fundamental way, allowing for comparisons across time, products, and asset

classes. In this work, we use the implied liquidity as proxy for market liquidity level.
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CHAPTER 3

PRELIMINARIES

In this chapter, we briefly give mathematical background related with the theory used

in this work. In details, we review the Conic Finance Theory to explain the basics

of the implied liquidity since we use the implied liquidity as a proxy for the market

liquidity level. Then, we recall OU process and its exponential version.

3.1 Conic Finance Theory

The two-price economy operates on a relatively classical view of markets, which

aligns with its role in traditional competitive analysis. In this view, markets act as a

counterparty to transactions. The primary difference from the traditional perspective

is that the terms of trade are dependent on the direction of trade, with two different

prices: ask is to buy from the market and bid is to sell to the market. The classical

market enables trading in both directions at the prevailing market price and accepts

all random cash flows at zero cost if they have a positive expectation under the equi-

librium pricing kernel. This creates a large set of risks that the market accepts on a

risk-neutral measure. However, the two-price market is more restrictive in its accep-

tance of trades. The market only accepts a smaller set of zero-cost risks, which are

modeled as a convex cone containing the nonnegative random variables.

When modeling the two-price market, the market is regarded as a passive counterparty

that accepts zero-cost trades suggested by opposite market participants. Cash flows

for trades are viewed as bounded random variables on probability space (Ω,F ,P). A

unique structure of cash flows acceptable to the market as a counterparty is formed
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by the convex cone of cash flows accepted at zero cost.

The law of one price states that if a cash flow X is acceptable to the market with

an expected value of zero, then trading occurs in both directions at the same price.

This means that −X is also acceptable. The set of cash flows that are considered

acceptable is determined by the half-space where the expected value of X is less than

or equal to zero, EP(X) ≥ 0. However, in two-price markets, we no longer assume

that the law of one price holds. The set of cash flows that can be accepted at zero cost

is denoted by the proper convex cone A, which only contains non-negative cash flows.

The size of this set is smaller than the set of the one-price economy. Furthermore, if

X is acceptable, it may not be acceptable when the direction of trade is reversed (−X)

on the same terms.

The constructive description of the non-negative cash flows in the convex cones was

established by [3]. They proved that a convex set M of probability measures Q

belonging to M and equivalent to P exists, and any acceptable risks (cash flows) in

set A are denoted by X if and only if:

EQ[X] ≥ 0 for any Q ∈ M.

The acceptability of cash flows is connected to a positive expectation through the

use of concave distortion. To achieve this, a preferred concave distortion is selected,

which is defined on the unit interval, 0 ≤ u ≤ 1. Therefore, any concave distribution

function Ψ(u) on the unit interval (u) can be utilized to define a random variable X

with a distribution function F(x) and the distorted expectation of a risk X is∫ ∞

−∞
xdΨ(FX(x)). (3.1)

To construct models for markets, one approach is to define intersecting sets of sup-

porting measures. However, this process is complex. In [12], the authors tackled

this challenge by introducing operational cones that is dependent only on the dis-

torted probability distribution of the cash flows. These cones enable the definition of

a market as a convex cone of zero-cost acceptable cash flows, along with an associ-

ated convex set of probability measures Q ∈ M. In accordance with the proposal
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by [12], the concept of distortion functions offers a practical approach to measuring

acceptability. Distortion functions, denoted as Ψ, are mathematical functions that are

both increasing and concave, mapping the unit interval [0, 1] onto itself. By applying

a distortion function to a cumulative distribution function, it introduces a distortion

effect based on a specific parameter value. The concavity of these distortion functions

plays a crucial role in assigning weights to different outcomes of a random variable

X. Lower outcomes are given higher weights, indicating their greater significance,

while higher outcomes receive relatively lower weights. Consequently, as the param-

eter value increases, the distorted expectation of a cash flow X decreases, implying a

diminishing impact on the overall value. In summary, utilizing a parametrized family

of distortion functions allows for the practical measurement of acceptability by quan-

tifying the distortion effect on the expectation of a cash flow. The concave nature of

these functions ensures a more pronounced emphasis on lower outcomes, providing

valuable insights into the impact and significance of different variables.

Equation (3.1) defines a cone of acceptable cash flows that is solely dependent on the

distribution function of the cash flow and distortion function. The integral in (3.1)

can be expressed as follows:

∫ ∞

−∞
xdΨ′(FX(x))f(x)dx, (3.2)

where f(x) = F ′
X(x).

When evaluating cash flows in the market, the concept of acceptability is linked to

positive expectations using concave distortion. This can also be expressed as an ex-

pectation under a change of measure. It is worth noting that as F(x) approaches zero,

large losses are given higher weights by the function Ψ′(FX(x)). As the distortion

becomes more concave, the upward reweighing of losses increases, making it more

difficult for cash flows to be deemed acceptable.

Cherny and Madan (2009) [12] introduced a family of concave distortion functions

that vary with a real number λ. This λ value controls the level of concavity and the

size of the set of acceptable cash flows. The cash flow X is considered acceptable if

the stressed expectation remains positive under the given concave distortion. Equa-

tion (3.2) can be used to compute the concave distortion function numerically using
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the distribution function of X . This computation can be simplified by using the em-

pirical distribution function of a sample of observations x1, x2, ..., xN . This gives the

following: ∫ ∞

−∞
xdΨ(FX(x)) =

N∑
n=1

xn

Å
Ψλ
( n
N

)
−Ψλ

Å
n− 1

N − 1

ãã
.

The index of acceptability or the measure of performance allows us to determine the

cash flows that are acceptable at a certain level of λ (as described in [12]). This index

is a non-negative real number that corresponds to a collection of terminal cash flows

viewed as random variables that are acceptable at this level. According to [12], one

way to construct the index of acceptability is by using a specific set of distortions.

We will review the distortion functions given in [12].

Distortion functions:

A concave distortion function refers to a concave function Ψ(u) that maps the unit

interval to itself: Ψ : [0, 1] → [0, 1] : u 7→ Ψ(u). The distortion functions are

employed as a functional approach to compute the distorted expectations as given in

(3.1). Thus, we briefly introduce some distortion functions given in [12].

i) The minvar distortion function: The minvar risk measure is linked to the acceptabil-

ity index, which involves computing a sample as the expected value of the smallest

selection from several choices in the cash flow distribution. The function is given:

Ψminvar
λ (u) = 1− (1− u)1+λ, λ ≥ 0.

One of the downsides of minvar is that it assigns relatively small weight to large

losses, making it not sufficiently relevant in economic theory. Consumers usually

prefer to avoid risks, and large losses are particularly undesirable. However, this risk

measure, minvar, is often regarded as too permissive towards risk and not sufficiently

risk-averse to be considered a good risk measure. As a result, minvar is not commonly

used as a risk measure in practice.

ii) The maxvar distortion function: The maxvar risk measure is linked to the accept-

ability index, which selects multiple items from the distribution and choosing the
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highest one, this method results in the cash flow distribution. The function is given:

Ψmaxvar
λ (u) = (1− u)

1

1 + λ , λ ≥ 0.

iii) The maxminvar distortion function: This approach can be perceived as creating

a scenario where the worst outcome is anticipated, by initially adopting a maxvar

perspective and subsequently employing a minvar perspective. The function is given:

Ψmaxminvar
λ (u) = (1− (1− u)1+λ)

1

1 + λ , λ ≥ 0.

It does not take into account large gains and, as such, is not commonly used.

iv) The minmaxvar distortion function: This approach can be perceived as creating

a scenario where the worst outcome is anticipated, by initially adopting a minvar

perspective and subsequently employing a maxvar perspective.

Ψminmaxvar
λ (u) = 1− (1− u

1

1 + λ )1+λ, λ ≥ 0.

The main advantage of this function is that it can preserve certain characteristics of

the original distribution, such as the minimum, maximum and variance, which can be

useful in certain situations where these features are important. However, it may result

in a loss of information and details compared to the original distribution.

v) The Wang transform: It is a method used to transform a probability distribution in

such a way that it can be used to generate scenarios that are more optimistic or more

pessimistic than the original distribution. The Wang transform can be used in finance

and economics to model financial risk and uncertainty, by shifting the distribution to

the left or right, it allows for the generation of scenarios that are more likely or less

likely to occur than the original distribution. More specifically, this process usually

give more weight to the downside (losses) than to the upside (profits) compared to the

original distribution function. The Wang transform is given as

ΨWang
λ (u) = Φ(Φ−1(u) + λ), u ∈ [0, 1] λ ≥ 0.

Implied liquidity:

Suppose the market accepts the risk X at the acceptability level L and its ask price is
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aL and the bid price is bL. They are given respectively [20]:

aL(X) = −
∫ ∞

−∞
xdΨ(L)(F−X(x))

bL(X) =

∫ ∞

−∞
xdΨ(L)(FX(x))

where Wang transform Ψ is given by

ΨL(y) = Ψ(Ψ−1(y) + L), y ∈ [0, 1] L ≥ 0.

The use of a concave distortion function ensures that the ask price is higher than the

bid price. While there are several distortion functions available, the Wang transform

is used as it assigns more weight to losses than profits, which is similar to the real

market scenario.

Assume that St satisfies:

St = S0exp((µ− σ2

2
)t+ σWt) t ≥ 0,

then the bid price of a European call option C is given as ([39] Equations 15-16):

bL(C) = Stexp(−Lσ
√
T − t)Φ(d1)− exp(−r(T − t))KΦ(d2), (3.3)

where d1 = ln(St/K)−(r+σ2/2)(T−t)+Lσ
√
T−t

σ
√
T−t

and d2 = d1− σ
√
T − t.

The ask price is given as

aL(C) = St exp(Lσ
√
T − tΦ(d1))− exp(−r(T − t))KΦ(d2), (3.4)

where d1 = ln(S0/K)+(r+σ2/2)T−Lσ
√
T

σ
√
T

and d2 = d1− σ
√
T .

For details and proofs, see [12, 20, 46].

The parameter L, matching the theoretical bid and ask prices with the real market

prices, is called "implied liquidity" [47, 1].

3.2 The Ornstein-Uhlenbeck Process

Corcuera et al. (2012) [20], and Albrecher et al. (2013) [1] observed a mean-reverting

behavior in the implied liquidity series. By following their suggestions, we con-

sider to model implied liquidity as an exponential OU process that is the most basic
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stochastic process explaining the characteristics of the process drift reverting to its

long term value. The OU process is introduced by [59]. The model is also known as

an arithmetic OU process.

Consider a probability space (Ω,F ,F,P) and an (F,P) Brownian motion Wt.

Definition 3.2.1. (Ornstein-Uhlenbeck process). A stochastic process (Xt)t≥0 de-

fined on the filtered probability space (Ω,F ,F,P) follows an (arithmetic) Ornstein-

Uhlenbeck process with mean µ satisfying the following Stochastic Differential Equa-

tion (SDE):

dXt = κ(µ−Xt)dt+ σdWt (3.5)

where κ denotes the mean reversion speed, µ is the long run mean, σ denotes the

volatility of the process and Wt is a standard Brownian motion.

The exact solution of (3.5) is obtained by applying Ito’s Lemma.

Theorem 3.2.1. (Ito’s Lemma) Given a diffusion process of the form

dXt = µdt+ σdWt

an a twice continuously differentiable function f(t, x) has the following dynamics:

df(t,Xt) =

Å
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2∂f

∂x
dWt.

ã
Theorem 3.2.2. The solution of the Ornstein-Uhlenbeck SDE in (3.5) is given by

Xt = X0e
−κt + e−κtµ(eκt − 1) + eκt

∫ t

0

σeκsdWs

Proof. By applying Ito’s lemma to the function Yt = eθtXt, we obtain

dYt = κeκtXtdt+ eκtdXt = κeκtXtdt+ eκt(κ(µ−Xt)dt+ σdWt)

gives that

= κeκtµdt+ eκtσdWt

Rewriting the formula in integral form gives

Yt = Y0 +

∫ t

0

σeκsµds+

∫ t

0

σeκsdWs = Y0 + µ(eκt − 1) +

∫ t

0

σeκsdWs
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Yt = eκtXt ⇒ Xt = e−κtYt

Xt = e−κtYt = X0e
−κt + e−κtµ(eκt − 1) + e−κt

∫ t

0

σeκsdWs

By rearranging the terms of the above equation we get the solution to the OU SDE:

Xt = X0e
−κt + e−κtµ(eκt − 1) + e−κt

∫ t

0

σeκsdWs

Xt is normally distributed with

E(Xt) = µ+ (X0 − µ)e−κt and var(Xt) =
σ2

2κ
(1− e−2κt).

For 0 ≤ s ≤ t, the covariance is

Cov(Xt, Xs) =
σ2

2κ
(e−κ|t−s| − e−κ(t+s)).

Table 3.1: Parameters used in simulation

g ς κ T ∆ N

2 0.5 5 10 1/250 T/∆

Figure 3.1: Simulated path - OU process

We provide a simulated path of an arithmetic OU process with the parameter set in

the Table 3.1 in the Figure 3.1.

3.2.1 Exponential Ornstein-Uhlenbeck Process

The arithmetic OU process is not a suitable model for asset prices, as it can take

negative values with positive probability. This problem is overcome by [55] with a

modification of arithmetic model: exponential (geometric) OU process (also known

as equilibrium one factor model, or Schwartz reduced form).
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Definition 3.2.2. (Exponential Ornstein-Uhlenbeck process) A stochastic process Xt

defined on the filtered probability space (Ω,F ,F,P) is an exponential OU process if

it satisfies the following stochastic differential equation:

dXt = κ(µ− ln(Xt))Xtdt+ σXtdWt. (3.6)

Lemma 3.2.1. Suppose X follows an exponential OU process, then the process Y =

ln(X) follows an OU process.

Proof.

dXt = κ(α− ln(Xt))Xtdt+ σXtdWt. (3.7)

Apply Ito’s lemma to f(Xt) = ln(Xt)

dln(Xt) =
∂f(Xt)

∂t
dt+

∂f(Xt)

∂Xt

dXt +
1

2

∂2f(Xt)

∂X2
t

dX2
t

=
∂lnXt

∂t
dt+

∂lnXt

∂Xt

dXt +
1

2

∂2lnXt

∂X2
t

dX2
t

= 0dt+
1

St

dSt −
1

2S2
t

(dSt)
2

= κ(µ− lnXt)dt+ σdWt −
1

2
σ2dt

= κ(µ− 1

2κ
σ2 − lnXt)dt+ σdWt

= κ(α− lnXt)dt+ σdWt, where α = µ− 1

2κ
σ2

Let Yt = ln(Xt)

dYt = κ(α− Yt)dt+ σdWt. (3.8)

Figure 3.2: Simulated path - Exponential OU process
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A simulated path of an exponential OU process with the parameter set in the Table

3.1 is given in Figure 3.2.
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CHAPTER 4

MODEL AND ESTIMATION

In this chapter, we introduce our approach to estimate the unknown parameters in

the Markov chain modulated OU model. First, we provide the notation and setting

required to introduce our model. To make a statistical inference for a hidden Markov

model, we use the Expectation Maximization (EM) algorithm. Accordingly, we re-

view the EM algorithm for Markov chain modulated OU process given in [28]. Note

that the proofs are not provided in [28]. For the thesis to be self contained, we pro-

vide them in detail. The implementation of the algorithm needs the filters that depend

on the observations continuously. These filters are known as robust filters [17, 42].

Thus, we derive the robust filters for our framework by following the idea introduced

in [17, 42]. This approach provides a discrete time setting however it has an explicit

approximation of the continuous time filters. Finally, working with discretized robust

filters makes it possible to introduce the variance estimate of the model, which is not

possible to estimate in the continuous time model setting.

4.1 Model setting and notation

This part gives the notation and dynamics of OU process which is modulated by a

continuous-time hidden Markov chain. Then, we give basic idea of the EM algorithm.

The state process: We assume a continuous-time finite-state Markov chain X =

{Xt; 0 ≤ t ≤ T} defined on a filtered probability space (Ω,F ,F,P) where F =

(Ft)(0≤t≤T ) is the global filtration that satisfies the usual conditions. All processes

are F-adapted. X has a state space S = {e1, e2, ..., eK} where ek is the kth basis
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column vector of RK . The transpose of its infinitesimal generator (transition rate

matrix) is denoted by A. Thus, we have A = (aij) such that, for i ̸= j, aij ≥ 0, ajj =

−
∑K

i ̸=j a
ij , i, j ∈ {1, . . . , K} and, its probability distribution is πt = (π1

t , . . . , π
K
t )

which satisfies the forward equation
dπt
dt

= Atπt with given initial probability π0.

Then, the state process X can be written as the following semimartingale form

Xt = X0 +

∫ t

0

AXsds+Mt (4.1)

where Mt is a F-martingale under P.

The observation process: Corcuera et al. (2012) [20] observed that implied liquidity

illustrates a mean reverting behavior, which is also supported by [1]. Then, following

the idea by [1] and [20], we assume that implied liquidity L follows a Markov-chain

modulated exponential OU process:

dLt = κ

Å
g̃(Xt) +

ς2

2
− log(Lt)

ã
Ltdt+ ςLtdWt, (4.2)

where κ > 0 is the mean reversion speed, g̃(Xt) is the long-run mean reversion level,

and ς is the volatility of the noise. W is a standard P-Brownian motion with respect

to F which is independent of X . We assume that the Markov chain X representing

the true market liquidity level is not directly observable, and the market participants

observe only the (log) implied liquidity given in (4.2). Here we point out that the

regime changes on true market liquidity have an impact on the long-run equilibrium

level of implied liquidity, thus we modulate the mean level g̃ with the Markov chain

X , i.e. g̃(X).

When we apply Ito’s formula to log(Lt) = Yt in (4.2), we get

dYt = κ(g̃(Xt)− Yt)dt+ ςWt. (4.3)

Note that variant of this model (without Markov-chain modulation) is also known as

Schwartz reduced-form [55].

The information accessible to the observer of the system is conveyed through the

sigma algebra generated by the filtration Y, that is

Y = (Yt)t≥0, Yt = σ{Ls, 0 ≤ s ≤ t} = σ{Ys, 0 ≤ s ≤ t}.
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The full information of the system is generated by the global filtration, i.e.

F = (Ft)t≥0, Ft = σ{Ls, Xs, 0 ≤ s ≤ t} = σ{Ys, Xs, 0 ≤ s ≤ t}.

Then, we define the normalized observation process yt = Yt/ς and denote by g =

g̃(.)/ς , we get:

dyt = κ(g(Xt)− yt)dt+Wt. (4.4)

Note that Yt ⊂ Ft, t ≥ 0. For an integrable and measurable process H , Ĥt :=

E[Ht|Yt] a.s.,the Y-optional projection, gives the filtered estimate of Ht. For a

generic function f it holds that f(Xt) = ⟨Xt, f⟩ where ⟨ , ⟩ denotes the scalar product

and fk = f(ek), 1 ≤ k ≤ K, so that functions of the Markov chain can be identified

with K-vectors.

EM algorithm: Here, we review the EM algorithm. The EM algorithm is a useful

tool for finding the maximum likelihood estimates (MLEs) of parameters in statistical

models. These models often involve unknown parameters, known data observations,

and latent variables. The EM algorithm proceeds in iterations, with each iteration

consisting of two steps. The first step is the expectation step (E-step), where the

algorithm creates a function that estimates the conditional expectation of the log-

likelihood (filtered log-likelihood) function based on the available information using

the current parameters. In the second step, called the maximization step (M-step), the

algorithm finds the parameters that maximize the log-likelihood function computed

in the E-step. In the following E-step, the distribution of the latent (hidden) variables

is calculated using the new parameter estimates. The EM algorithm can converge to a

local maximum of the likelihood function and it provides estimates for the unknown

parameters. The algorithm iterates between two steps until a given convergence cri-

terion is met for the sequence of MLEs.

Let θ denote the set of unknown parameters and Θ denote the set of admissible pa-

rameters such that θ ∈ Θ. Pθ is the corresponding probability measure which is

absolutely continuous with respect to the fixed probability measure Pθ0 , where θ0 is

the initial parameter set. The algorithm starts with the initial parameter set θ0 to ob-

tain an estimate of the parameter set θ1. The iterative estimation procedure produces
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a sequence of parameter estimates {θn}n∈N . The main steps of the algorithm are

summarized as follows:

E-step: Set θ∗ = θn and compute the filtered loglikelihood function

L̂(θ, θ∗) = Eθ∗(log
dPθ

dPθ∗
|YT ) for all θ, θ∗ ∈ Θ.

M-step: Maximize L̂(θ, θ∗) to find θn+1, i.e.

θn+1 ∈ argmaxθ∈Θ L̂(θ, θ
∗).

4.1.1 EM algorithm for the current setting

The estimation problem aims to have the MLEs for the unknown parameters A, g

and κ. The EM methodology for OU process follows from [28]. First, we introduce

several processes that are required in the E-step of the algorithm.

i) J i
t is the occupation time of the state of the Markov chain in state i until time t:

J i
t =

∫ t

0

⟨Xr, ei⟩dr. (4.5)

ii) N ij
t is the number of transitions from state i to j of the process X where i ̸= j

up to time t:

N ij
t =

∫ t

0

⟨Xr, ei⟩⟨dXr, ej⟩. (4.6)

iii) Gi
t is the level sum of the integral for state ei until time t:

Gi
t =

∫ t

0

⟨Xr, ei⟩dyr. (4.7)

iv) I it is the auxiliary process for the state i until the time t:

I it =

∫ t

0

yr⟨Xr, ei⟩dr. (4.8)

a) E-step:

Suppose that the estimation step starts with a parameter set

θ∗ = (a∗ij, g∗i, κ∗, 1 ≤ i, j ≤ N).
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Then, we estimate the new parameter set

θ = (aij, gi, κ, 1 ≤ i, j ≤ N),

which maximizes the log-likelihood function. Denote by Pθ∗ and Pθ the correspond-

ing probability measures implied by θ∗ and θ.

We have that

L̂(θ, θ∗) = E[log
dPθ

dPθ∗
|YT ] =

N∑
i=1

(κgiĜi
T − 1

2
κgi

2
Ĵ i
T + κgiÎ iT ) (4.9)

+
N∑
i ̸=j
i,j=1

(N̂ ij
T log(aji)− ajiĴ i

T ) + R̂(θ∗),

where R̂(θ∗) is independent of θ.

b) Maximization step:

In the maximization step of the algorithm, the updates from A∗, g∗, κ∗ to A, g, κ are

given by

i) The estimate of aji:

âji =
N̂ ij

T

Ĵ i
T

. (4.10)

ii) The estimate for κ:

κ̂ =
C

D
(4.11)

where

C =

∫ T

0

ysdys −
N∑
i=1

Î iT Ĝ
i
T

Ĵ i
T

D =
N∑
i=1

(Î iT )
2

Ĵ i
T

−
∫ T

0

y2sdys.

iii) The estimate for gi:

ĝi =
κ̂−1Ĝi

T + Î iT

Ĵ i
T

. (4.12)

In the following, we show how to obtain MLEs given in (4.10) to (4.12).
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The derivation of the MLEs of unknown parameters

The computation of the EM algorithm is based on the filtered estimates in (4.9). We

need to find the expression for
dPθ

dPθ∗
where

θ∗ = (a∗ij, g∗i, κ∗, 1 ≤ i, j ≤ K).

and

θ = (aij, gi, κ, 1 ≤ i, j ≤ K).

are two possible parameter sets. Now,

dPθ

dPθ∗

∣∣∣∣
Ft

=exp

ï∫ t

0

(κ(⟨Xr, g⟩ − yr)− κ∗(⟨Xr, g
∗⟩ − yr)) dyr

− 1

2

∫ t

0

(
κ2(⟨Xr, g⟩ − yr)

2 − κ∗2(⟨Xr, g
∗⟩ − yr)

)2
dr

ò
×

K∏
i,j=1

Å
aji

aji∗

ãN ij

exp

Å∫ t

0

(aji − aji
∗
)⟨Xr, ei⟩dr

ã
.

Given the observations yt, 0 ≤ t ≤ T , the partial information loglikelihood function

becomes

L(θ, θ∗) =E

[
log

dPθ

dPθ∗
|YT

]
(4.13)

=κ

[Ç
E

∫ T

0

⟨Xr, g⟩dyr|YT

å
−
Ç
E

∫ T

0

yrdyr|YT

å]
− 1

2
κ2

[
E

Ç∫ T

0

⟨Xr, g⟩2dr|YT

å
− 2E

Ç∫ T

0

yr⟨Xr, g⟩dr|YT

å
+ E

Ç∫ T

0

y2rdr|YT

å]
+

K∑
i ̸=j
i,j=1

Ç
log(aji)E(N ij

T |YT )− ajiE

Ç∫ T

0

⟨Xr, ei⟩dr|YT

åå
+ R̂(θ∗),

where R̂(θ∗) is the remainder term independent of θ.

Note that ⟨Xr, g⟩ =
∑K

i=1 g
i⟨Xr, ei⟩ and ⟨Xr, g⟩2 =

∑K
i=1 g

i2⟨Xr, ei⟩. The simplified
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form of (4.13) can be written as

L(θ, θ∗) =
K∑
i=1

κgiE

Ç∫ T

0

⟨Xr, ei⟩dyr|YT

å
(4.14)

−
K∑
i=1

1

2
κ2gi

2
E

Ç∫ T

0

⟨Xr, ei⟩dyr|YT

å
+

K∑
i=1

κ2giE

Ç∫ T

0

yr⟨Xr, ei⟩dr|YT

å
+

K∑
i ̸=j
i,j=1

Ç
log(aji)E(N ij

T |YT )− ajiE

Ç∫ T

0

⟨Xr, ei⟩dr|YT

åå
+ R̂(θ∗).

We can rewrite (4.14) by replacing the conditional expectations of the quantities in

(4.5) to (4.8).

Then, the Equation (4.14) becomes

L̂(θ, θ∗) = E[log
dPθ

dPθ∗
|YT ] =

N∑
i=1

(κgiĜi
T − 1

2
κgi

2
Ĵ i
T + κgiÎ iT ) (4.15)

+
N∑
i ̸=j
i,j=1

(N̂ ij
T log(aji)− ajiĴ i

T ) + R̂(θ∗).

Then, we maximize L(θ, θ∗) with respect to θ. This means that we equate the partial

derivatives of (4.15) with respect to gi, aji and κ to zero. After necessary simplifica-

tions, we obtain the estimates for the model parameters as

âji =
N̂ ij

T

Ĵ i
T

.

κ̂ =
C

D

where

C =

∫ T

0

ysdys −
N∑
i=1

Î iT Ĝ
i
T

Ĵ i
T

D =
N∑
i=1

(Î iT )
2

Ĵ i
T

−
∫ T

0

y2sdys.

ĝi =
κ̂−1Ĝi

T + Î iT

Ĵ i
T

.
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4.2 Filtering

In order to execute the EM algorithm, it is necessary to acquire filtered estimates of

the quantities in Equation 4.15. This is a non-linear filtering problem. To address this

problem, we first review the continuous time filters for the OU process and then we

introduce the robust filters of the processes (4.5) - (4.8).

4.2.1 Continuous time filters

In this part, we review the continuous time filters derived in [28]. They present non-

linear filtering results that are required in the EM algorithm to obtain the unknown

parameters in the OU model. In [28], first the normalized filters are obtained by

the innovation approach, then the corresponding unnormalized filters are introduced.

Note that the proofs are not provided in [28]. For the thesis to be self contained, we

provide them below in detail. First, we will recall the main results with their proofs

on the general finite-dimensional filters given in [28].

Theorem 4.2.1. (Theorem 1 in [29]) Consider the process H = {Ht; 0 ≤ t ≤ T}
described as

Ht = H0 +

∫ t

0

αrdr +

∫ t

0

δrdWr +

∫ t

0

βrdMr (4.16)

where α and δ are F-predictable scalar processes and β is F-predictable K dimen-

sional vector process. Furthermore,

E

ñ∫ T

0

(|αr|+ |δr|)2dr
ô
+ E

[∫ T

0

K∑
i=1

|βi
r|dr

]
<∞.

Then Ĥ has a form

Ĥt = Ĥ0 +

∫ t

0

α̂rdr +

∫ t

0

µ1
rdwr (4.17)

where

µ1
r = δ̂r + κ(⟨Xr, g⟩ − ŷr)Hr − κ(⟨X̂r, g⟩ − yr)Ĥr. (4.18)

Proof. The following properties are used for the proof.

1. For every F-martingale M , the projection M̂ is Y-martingale.
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2. For a F-adapted, integrable process α, the process( ̂∫ t

0

αrdr −
∫ t

0

α̂rdr

)
0<t<T

is a Y-martingale.

3. For every F-martingale µ, there is a F-predictable process γ such that

γt = γ0 +

∫ t

0

µrdwr.

Property (1) and Property (2) are standard in the nonlinear-filtering literature, the

proof of Property (3) can be found in [19]. Using Property (1) and Property (2), we

write

Ĥt = Ĥ0 +

∫ t

0

α̂rdr + γt

for some Y-martingale µ. Using Property (3) gives that

Ĥt = Ĥ0 +

∫ t

0

α̂rdr +

∫ t

0

µ1
rdwr. (4.19)

Now, we need to identify the integrand µ1. The observation process y can be written

either as

dyt = κ(⟨Xt, g⟩ − yt)dt+Wt. (4.20)

or in innovations form

dyt = κ(⟨X̂r, g⟩ − yt)dt+ wt. (4.21)

where the innovations process is represented by the Brownian motion process w [29].

From [4.16] and [4.20], applying Ito’s product rule, we have

ytHt =

∫ t

0

yrαrdr +

∫ t

0

κ(⟨Xr, g⟩ − yr)Hrdr +

∫ t

0

δrdr + γ1t (4.22)

where γ1 is an F-martingale. Then using (1) and (2), we have the dynamics for ŷtHt

ŷtHt =

∫ t

0

yrα̂rdr +

∫ t

0

κ(⟨Xr, g⟩ − ŷr)Hrdr +

∫ t

0

δ̂1rdr + γ2t (4.23)
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where γ2 is an F-martingale.

Moreover, it holds that ŷtHt = ytĤt as y is Y-adapted. From (4.19) and (4.21),

applying Ito’s product rule, we get

ytĤt =

∫ t

0

yrα̂rdr +

∫ t

0

κ(⟨X̂r, g⟩ − yr)Ĥrdr +

∫ t

0

µ1
rdr + γ3t (4.24)

where γ3 is an F-martingale.

As ŷtHt is a special semimartingale and has a unique decomposition (see [51], Chap-

ter 7, Theorem 34), ŷtHt = ytĤt, the finite variation and martingale parts in (4.23)

and (4.24) must be equal. Thus, equating the integrands, we get

µ1
r = δ̂r + κ ̂(⟨Xr, g⟩ − yr)Hr − κ(⟨X̂r, g⟩ − yr)Ĥr.

Note that the integrand µ1
r includes the ̂⟨Xr, g⟩Hr which is not recursive. [29] consid-

ers a filter for (HtXt)t≥0 to overcome this problem. In the following, we follow this

idea and provide the filter for the process (HtXt)t≥0 for the case with the observation

process given in (4.4).

Proposition 4.2.1.1.

ĤtXt =Ĥ0X0 +

∫ t

0

α̂rXrdr +

∫ t

0

ĤrAXrdr

+
K∑

i,j=1

∫ t

0

⟨β̂j
rXr − β̂i

rXr, ei⟩ajidr(ej − ei)

+

∫ t

0

µ2
rdwr

where

µ2
r = δ̂rXr + κ ̂(⟨Xr, g⟩ − yr)HrXr − κ(⟨X̂r, g⟩ − yr)ĤrXr.

Proof. Using (4.16) and (4.1) and applying Ito’s product rule, we obtain

HtXt =H0X0 +

∫ t

0

αrXrdr +

∫ t

0

βrXr−dMr +

∫ t

0

δrXr−dWr

+

∫ t

0

HrAXrdr +

∫ t

0

Hr−dMr +
∑
0<r≥t

(βr∆Xr)∆Xr.
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Note that [H,X]t =
∑

0<r≥t(βr∆Xr)∆Xr and

∑
0<r≥t

(βr∆Xr)∆Xr =
K∑

i,j=1

∫ t

0

⟨β̂j
rXr − β̂i

rXr, ei⟩ajidr(ej − ei) +Mt

for some F-martingale M , for the proof see ([29], Theorem 2).

Theorem 4.2.1 can be applied to H = HX with

αr = αrXr +HrAXr +
K∑

i,j=1

∫ t

0

⟨β̂j
rXr − β̂i

rXr, ei⟩ajidr(ej − ei)

δr = δrXr−.

β does not appear in µ1
r . From Theorem 4.2.1,

ĤtXt =Ĥ0X0 +

∫ t

0

α̂rXrdr +

∫ t

0

ĤrAXrdr

+
K∑

i,j=1

∫ t

0

⟨β̂j
rXr − β̂i

rXr, ei⟩ajidr(ej − ei)

+

∫ t

0

µ2
rdwr

where

µ2
r = δ̂rXr + κ ̂(⟨Xr, g⟩ − yr)HrXr − κ(⟨X̂r, g⟩ − yr)ĤrXr.

Moreover,

⟨Xr, g⟩Xr =
K∑
k=1

⟨Xr, ek⟩gkek

Similarly,

̂(⟨Xr, g⟩)HrXr − ŷrHrXr =
K∑
k=1

⟨HrXr, ek⟩gkek − ŷrHrXr = BrĤrXr.

ĤtXt =Ĥ0X0 +

∫ t

0

α̂rXrdr +

∫ t

0

ĤrAXrdr (4.25)

+
K∑

i,j=1

∫ t

0

⟨β̂j
rXr − β̂i

rXr, ei⟩ajidr(ej − ei)

+

∫ t

0

(δ̂rXr + κBrĤrXr − κ(⟨X̂r, g⟩ − yr)ĤrXr)dwr
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The filter in (4.25) is also called as normalized filter of (HtXt)t≥0. In order to obtain

robust filters introduced later in Section (4.2.2), one needs the dynamics of unnormal-

ized filters. The unnormalized filters are linear and directly driven by the observation

process y. To derive unnormalized filters, we first introduce a new probability mea-

sure.

Assume that there is a probability measure P̄ on (Ω,FT ) under which X is a finite

state Markov chain with the transpose of the intensity matrix A and w = {wt =

yt; 0 ≤ t ≤ T} is a Brownian motion independent of X . Consider the reference prob-

ability measure P̄ such that P ∼ P̄ and the corresponding Radon-Nikodym derivative

of P with respect to probability measure P̄ is given by

dP
dP̄

∣∣∣∣
Ft

= Λt.

where

Λt = exp

ß∫ t

0

κ⟨Xs, g⟩dys −
1

2

∫ t

0

κ2⟨Xs, g⟩2ds
™
. (4.26)

According to Girsanov’s theorem, the process dWt = dyt−κ(⟨Xs, g⟩−yt)dt, W0 =

0 is a P-Wiener process and independent of X . That is, the process y is a standard

Brownian motion under the probability measure P̄, while the dynamics of Markov

chain does not change under P̄. Working under the reference probability measure

P̄ makes the calculations easier since the observation process y becomes a Wiener

process. To summarize, under the measure P, the dynamics of the Markov chain X

and the observation process y are:

dXt = AXtdt+ dMt

dyt = κ(⟨Xt, g⟩ − yt)dt+ dWt.

Under the measure P̄, the dynamics are:

dXt = AXtdt+ dMt

dyt = dwt.

Suppose we have an F-adapted process given by ψ = {ψt : 0 ≤ t ≤ T}, and let

ψ̂ = {ψ̂t : 0 ≤ t ≤ T} be the Y-optional projection of the process ψ. Under

P, ψ̂t = E[ψt|Yt], P-a.s. Let σ(ψ) = {σ(ψt) : 0 ≥ t ≥ T} be the Y-optional
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projection of the process ψΛ under the measure P̄. That is σ(ψt) = Ē[ψt|Yt], P̄-

a.s.

Definition 4.2.1. 1. The Y-optional projection process ψ̂ is called the normalized

filter of ψ.

2. The process σ(ψt) i called unnormalized filter of ψ.

With using Bayes’ rule, we have that

ψ̂t =
σ(ψt)

σ(1)
P̄-a.s. (4.27)

where Λ̄t = σ(1) = Ē[Λt|Yt].

To obtain the dynamics of unnormalized filters, we first need Λ̄.

Corollary 4.2.1.1. Λ̄t is of the form

Λ̄t = 1 +

∫ t

0

Λ̄rκ(⟨Xr, g⟩ − yr)dr. (4.28)

Proof. Λ̄t is a (P̄,F) martingale. Then, we apply Theorem 4.2.1 with Ht = Λ̄r,

αr = 0, βr = 0, γr = Λ̄r⟨Xr, g⟩ and y is a Brownian motion. Applying Bayes’

formula in (4.27), we have the result.

Now, we are ready to derive the unnormalized filters. Note that following result is

given in [28] without the proof.

Theorem 4.2.2. (Theorem 1 in [28]) The recursive equation for the evolution of

σ(HX) is given by

σ(HtXt) =σ(H0X0) +

∫ t

0

σ(αrXr−)dr +

∫ t

0

ArHrXrdr

+
n∑

i,j=1

∫ t

0

⟨σ(βj
rXr− − βi

rXr−), ei⟩(aji)rdr(ej − ei)

+

∫ t

0

(κBrσ(Hr−Xr) + σ(δrXr−))dyr

for 0 ≤ t ≤ T , where Br is the k × k diagonal matrix with Br = gi − yr.
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Proof. From Bayes formula, σ(HtXt) = Λ̄tĤtXt, applying Ito’s product rule

σ(HtXt) =σ(H0X0) +

∫ t

0

σ(αrXr)dr +

∫ t

0

AHrXrdr

+
n∑

i,j=1

∫ t

0

⟨σ(βj
rXr − βi

rXr), ei⟩(aji)rdr(ej − ei)

+

∫ t

0

(σ(δrXr) + κBrσ(HrXr)− κ(⟨X̂r, g⟩ − yr)σ(HrXr))dwr

+

∫ t

0

κ(⟨X̂r, g⟩ − yr)σ(HrXr)dyr +

∫ t

0

(κ(⟨X̂r, g⟩ − yr)σ(HδrXr)

+ κ2Br(⟨X̂r, g⟩ − yr)σ(HrXr)− κ2(⟨X̂r, g⟩ − yr)
2σ(HrXr))dr.

where dwr = dyr −
∫ t

0
(κ(⟨X̂r, g⟩ − yr)dr, replacing dwr and after cancellations we

get the result.

Now, one can obtain the filters for the process X , N ij , J i, Gi and I i by applying

Theorem 4.2.2. First, take Ht = H0 = 1 and α = β = δ = 0 in Theorem 4.2.2, the

recursive filter σ(Xt) for the state process is given by (see also Equation (16) in [29]):

σ(Xt) = σ(X0) +

∫ t

0

Arσ(Xr)dr +

∫ t

0

κBrσ(Xr)dyr. (4.29)

Let 1 = (1, ..., 1), then ⟨Xt,1⟩ = 1. Then, the normalized filter for the state process

X is given by

E[Xt|Yt] = X̂t =
σ(Xt)

⟨σ(Xt),1⟩
.

Next, in order to obtain the filters for N ij , we notice that ⟨Xr−, ei⟩Xr = ⟨Xr−, ei⟩ei
and thus
n∑

i,j=1

⟨σ(βj
rXr−βi

rXr), ei⟩aji(ej−ei) = ⟨⟨Xr−, ei⟩ei, ei⟩aji(ej−ei)+⟨Xr−, ei⟩aji(ej−ei)

Then taking Ht = N ij
t , H0 = 0, αr = ⟨Xr−, ei⟩aji, δr = 0 and βr = ⟨Xr−, ei⟩ej in

Theorem 4.2.2 and the recursive algorithm σ(N ij
t Xt) for the process (N ij

t Xt) is (see

also Equation (43) in [28]):

σ(N ij
t Xt) =

∫ t

0

aji⟨σ(Xr), ei⟩ejdr +
∫ t

0

Arσ(N
ij
r Xr)dr +

∫ t

0

κBrσ(N
ij
r Xr)dyr.

The unnormalized filter for N ij
t is given as

σ(N ij
t ) = ⟨σ(N ij

t Xt),1⟩,
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and the normalized filter of N ij
t is given by

E[N ij
t |Yt] = N̂ ij

t =
σ(N ij

t )

⟨σ(Xt),1⟩
.

To get the filter for J i, notice that ⟨Xr−, ei⟩Xr = ⟨Xr−, ei⟩ei, then apply Theorem

4.2.2 with Ht = Jt, H0 = 0, δr = βr = 0, the recursive filter σ(J i
tXt) of the process

J i
tXt is

σ(J i
tXt) =

∫ t

0

⟨σ(Xr), ei⟩eidr +
∫ t

0

Arσ(J
i
rXr)dr +

∫ t

0

κBrσ(J
i
rXr)dyr. (4.30)

The unnormalized filter for J i
t is

σ(J i
t ) = ⟨σ(J i

tXt),1⟩,

and the normalized filter J i
t is given as

E[J i
t |Yt] = Ĵ i

t =
σ(J i

t )

⟨σ(Xt),1⟩
.

Now, applying Theorem 4.2.2 with Ht = Gi
t, H0 = 0, δr = κ(gi − yr)⟨Xr, ei⟩,

and βr = 0, we obtain the recursive algorithm σ(Gi
tXt) for the process Gi

tXt is (see

also Equation (47) in [28]):

σ(Gi
tXt) =

∫ t

0

⟨κ(gi − yr)σ(Xr), ei⟩eidr +
∫ t

0

Arσ(G
i
rXr)dr (4.31)

+

∫ t

0

(κBrσ(G
i
rXr) + ⟨σ(Xr), ei⟩ei)dyr. (4.32)

The unnormalized filter for Gi
t is given as

σ(Gi
t) = ⟨σ(Gi

tXt),1⟩,

and the normalized filter Gi
t is given as

E[Gi
t|Yt] = Ĝi

t =
σ(Gi

t)

⟨σ(Xt),1⟩
.

Finally, applying Theorem 4.2.2 with Ht = It, H0 = 0, αr = yr⟨Xr−, ei⟩, δr =

βr = 0, we obtain the recursive algorithm σ(I itXt) for the process I itXt is (see also

Equation (50) in [28]):

σ(I itXt) =

∫ t

0

yr⟨σ(Xr), ei⟩eidr+
∫ t

0

Arσ(I
i
rXr)dr+

∫ t

0

κBrσ(I
i
rXr)dyr. (4.33)
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The unnormalized filter for I it is given as

σ(I it) = ⟨σ(I itXt),1⟩,

and the normalized filter I it is given as

E[I it |Yt] = Î it =
σ(I it)

⟨σ(Xt),1⟩
.

4.2.2 Robust Filters

In this part, we aim to derive robust versions of the filters given in Section (4.2.1)

using the techniques in [17] and [42]. Using the robust form of a filter instead of the

standard form has the advantage of involving minimum number of stochastic integrals

compared to the latter case. This yields the corresponding robust discretization of the

model. The derived robust filters are not only needed for the robust discretization, but

also help us to estimate the volatility of the liquidity within the EM algorithm.

To do this, we consider a diagonal matrix Φt with entries ϕi
t for each i, 1 ≤ i ≤ K.

This means that, given

Φt = diag(ϕ1
t , ..., ϕ

K
t )

and let define Bt = diag(⟨g, ei⟩ − yt), Φt has dynamics

Φt = exp(κBtyt −
1

2
κ2B2

t t).

It satisfies the following equation

dΦt = ΦtκBtdyt.

As a result, the matrix Φt is invertible and its inverse exists with dynamics:

Φ−1
t = Φ−1

0 −
∫ t

0

Φ−1
r κBrdyr +

∫ t

0

Φ−1
r κ2B2dr.

For any F-adapted, integrable process H we define the transformation

σ̄(HtXt) = Φ−1
t σ(HtXt),

where σ(·) indicates the unnormalized filter for HX .
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Theorem 4.2.3. The unnormalized filter σ(Xt) of the state process X has a robust

version defined as

σ̄(Xt) = Φ−1
t σ(Xt), σ̄(X0) = σ(X0)

which is a finite variation process and solves the linear ordinary differential equation

(ODE) in RK:

d

dt
σ̄(Xt) = Φ−1

t AΦtσ̄(Xt), σ̄(X0) = σ(X0). (4.34)

Proof. Apply Ito’s product rule to the product Φ−1
t σ(Xt).

dσ̄(Xt) = dΦ−1
t σ(Xt)

= Φ−1
t dσ(Xt) + dΦ−1

t σ(Xt) + [Φ−1
t , σ(X)]t

= Φ−1
t Aσ(Xt)dt+ κBtΦ

−1
t σ(Xt)dyt − κBtΦ

−1
t σ(Xt)dyt

+ κ2B2
tΦ

−1
t σ(Xt)dt− κ2B2

tΦ
−1
t σ(Xt)dt

= Φ−1
t Aσ(Xt),

with replacing σ(Xt) = Φtσ̄(Xt)

σ̄(Xt) = Φ−1
t AΦtσ̄(Xt)dt.

Corollary 4.2.3.1. The solution of the unnormalized filter of the state process X is

given by

σ(Xt) = Φtσ̄(Xt) (4.35)

where

σ(Xt) = σ(X0) +

∫ t

0

Arσ(Xr)dr +

∫ t

0

κBrσ(Xr)dyr.

Proof. Apply Ito’s product rule to the product Φtσ̄(Xt).

dσ(Xt) = dΦtσ̄(Xt)

= Φtdσ̄(Xt) + d(Φt)σ̄(Xt) + [Φ, σ̄(Xt)]t

= ΦtΦ
−1
t AΦtσ̄(Xt)dt+ ΦtκBtdytσ̄(Xt)dt

= Aσ(Xt)dt+ κBtσ(Xt)dyt

σ(Xt) = σ(X0) +

∫ t

0

Arσ(Xr)dr +

∫ t

0

κBrσ(Xr)dyr.
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In the same vein, using the process Φ−1
t the robust filters can be obtained for the other

quantities.

Proposition 4.2.3.1. 1. The recursive nonlinear stochastic integral equation has

a robust version, i.e. σ̄(N ij
t Xt) = Φ−1

t σ(N ij
t Xt) that satisfies the following

equation

σ̄(N ij
t Xt) =

∫ t

0

⟨σ̄(Xr), ei⟩ajiejdr +
∫ t

0

Φ−1
r AΦrσ̄(N

ij
r Xr)dr (4.36)

with initial condition σ̄(N ij
0 X0) = 0.

2. The recursive nonlinear stochastic integral equation has a robust version, i.e.

σ̄(J i
tXt) = Φ−1

t σ(J i
tXt) that satisfies the following equation

σ̄(J i
tXt) =

∫ t

0

⟨σ̄(Xr), ei⟩eidr +
∫ t

0

Φ−1
r AΦrσ̄(J

i
rXr)dr (4.37)

with initial condition σ̄(J i
0X0) = 0.

3. The recursive nonlinear stochastic integral equation has a robust version, i.e.

σ̄(Gi
tXt) = Φ−1

t σ(Gi
tXt) that satisfies the following equation

σ̄(Gi
tXt) =

∫ t

0

⟨σ̄(Xr), ei⟩eidyr +
∫ t

0

Φ−1
r AΦrσ̄(G

i
rXr)dr (4.38)

with initial condition σ̄(Gi
0X0) = 0.

4. The recursive nonlinear stochastic integral equation has a robust version, i.e.

σ̄(I itXt) = Φ−1
t σ(I itXt) that satisfies the following equation

σ̄(I itXt) =

∫ t

0

yr⟨σ̄(Xr), ei⟩eidr +
∫ t

0

Φ−1
r AΦrσ̄(I

i
rXr)dr (4.39)

with initial condition σ̄(I i0X0) = 0.

Proof. Proofs of (4.36) to (4.39) in (4.2.3.1) are obtained by applying Ito’s product

formula to Φ−1
t σ(N ij

t Xt), Φ−1
t σ(J i

tXt), Φ−1
t σ(Gi

tXt) and Φ−1
t σ(I itXt) respectively

and are very similar to proof of Theorem 4.2.3. Thus, they are omitted.

Furthermore, it can be shown that Φtσ̄(N
ij
t Xt),Φtσ̄(J

i
tXt),Φtσ̄(G

i
tXt) and

Φtσ̄(I
i
tXt) are the solutions of σ(N ij

t Xt), σ(J i
tXt), σ(Gi

tXt) and σ(I itXt), respec-

tively. Proofs are very similar to the proof of Corollary (4.2.3.1) and thus they are

omitted.
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4.2.2.1 Discrete time filters

To perform numerical computation, the equation needs to be discretized in time.

There are two approaches to do this: one approach is to directly discretize the

continuous-time filters presented in Section (4.2.2). The other approach is to

discretize the robust filters. The following will explain the process of discretizing the

robust filters. Consider a constant time step ∆ = tn − tn−1 and take the ODE (4.34):

σ̄(Xtn) = σ̄(Xtn−1) +

∫ tn

tn−1

Φ−1
s AΦsσ̄(Xs)ds (4.40)

≃ σ̄(Xtn−1) + Φ−1
tn−1

AΦtn−1σ̄(Xn−1)∆

≃ [I + Φ−1
tn−1

AΦtn−1 ]p̄tn−1 ,

which gives the following explicit approximation

σ̄(Xn) = [I + Φ−1
tn−1

AΦtn−1 ]σ̄(Xn−1). (4.41)

Multiplying both sides by Φtn gives the following approximation

σ(Xn) = ΦtnΦ
−1
tn−1

[I +∆A]σ(Xn−1) = Ψn[I +∆A]σ(Xn−1) (4.42)

where

Ψs
t = ΦtΦ

−1
s = exp(κBt−1(yt − yt−1)−

1

2
κ2B2

t−1dt)

and

Ψn = ΦtnΦ
−1
tn−1

= diag(ψ1
n, ..., ψ

N
n ) with ψi

n = ϕi
tn/ϕ

i
tn−1

.

The equation given in (4.42) is a discrete time approximation for the Duncan-

Mortensen-Zakai equation.

For a small enough time step ∆ = tn − tn−1, denote the generator matrix by A∗,

P = [I+∆A∗] is the transition probability matrix with entries πij , then we define the

fast sample observations

z∆n =
1

∆
[ytn − ytn−1 ], n = 1, 2, . . . , N.

Now, we can work under the discrete hidden Markov model setting. Our discrete time

model becomes as following

z∆n = κ(g(Xn)− Ytn) +W∆
n (4.43)
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where (Xn)(n≥0) is a discrete-time Markov chain with a state space S = {e1, · · · eK}
and {(W∆

n )(n≥0)} is a Gaussian white noise sequence with a covariance matrix ∆−1I .

Let us write

Fn = σ(Xn, z
∆
n , 0 ≤ n ≤ N)

and

Yn = σ(z∆n , 0 ≤ n ≤ N).

The EM algorithm for the introduced discrete time model requires the conditional

expectations of the following quantities:

i) Xn, state of the Markov chain.

ii) N ij
n , the number of transitions of the Markov chain from the state ei to the state

ej up to time N

N ij
n =

N∑
n=1

⟨Xn−1, ei⟩⟨Xn, ej⟩. (4.44)

iii) J i
n, the occupation visit of the process X in state ei until time N

J i
n =

N∑
n=1

⟨Xn−1, ei⟩. (4.45)

iv) Gi
n, the level sum in the state ei until time N

Gi
n =

N∑
n=1

⟨Xn−1, ei⟩z∆n . (4.46)

v) I in, the auxiliary process in state ei up to time N

I in =
N∑

n=1

yn⟨Xn−1, ei⟩. (4.47)

In the same vein, to obtain discrete time unnormalized filters, we first discretize the

robust filters in from 4.36 to 4.39 by Euler Maruyama scheme. Then we multiply

both sides of the equations with Φtn . The discrete time unnormalized filters are given
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as:

σ(N ij
n Xn) =ΨnP

∗σ(N ij
n−1Xn−1) + ⟨σ(Xn−1), ei⟩⟨ΨnP

∗ei, ej⟩ej (4.48)

σ(J i
nXn) =ΨnP

∗σ(J i
n−1Xn−1) + ⟨σ(Xn−1), ei⟩ΨnP

∗ei (4.49)

σ(Gi
nXn) =ΨnP

∗σ(Gi
n−1Xn−1) + z∆n ⟨σ(Xn−1), ei⟩ΨnP

∗ei (4.50)

σ(I inXn) =ΨnP
∗σ(I in−1Xn−1) + Yn−1⟨σ(Xn−1), ei⟩ΨnP

∗ei. (4.51)

Remark 4.2.1. If the log likelihood function for the discrete time model is a good ap-

proximation to the likelihood function for the continuous time model, then the param-

eter estimates obtained from the maximization step in the discrete time setting should

be reasonably close to a stationary point of the likelihood function for the continuous

time model. In other words, if the discrete time model provides a good representation

of the underlying continuous time dynamics, the estimates obtained from the discrete

time optimization procedure should align with the maximum likelihood estimates of

the continuous time model.

This assumption relies on the idea that as the time interval between observations in

the discrete time model becomes infinitesimally small, the discrete time model ap-

proaches the continuous time model. Therefore, if the discrete time model accurately

captures the essential features of the continuous time process, the parameter estimates

obtained from the discrete time estimation should be close to the stationary point of

the continuous time likelihood function.

However, it is important to note that this assumption depends on the specific modeling

framework, the nature of the data, and the underlying assumptions of the continuous

time model. Careful validation and testing of the approximation and parameter esti-

mates are necessary to ensure the reliability and accuracy of the results.

Based on Remark (4.2.1), now, we can work under the discrete hidden Markov model

setting.

To avoid numerical overflows, we normalize the filters in (4.40) and (4.48) to (4.51).

First, we define the normalization constant cn = ⟨ΨnP
∗σ(Xn−1),1⟩.

Take Hn = N ij
n , J

i
n, G

i
n and I in, we define

ĤnXn = σ(HnXn)/γn
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where

γn = ⟨σ(Xn),1⟩ = cn · cn−1 · · · c1.

The normalized discrete time recursive filters are:

σ(Xn) = ΨnP
∗σ(Xn−1)/cn (4.52)

σ(N ij
n Xn) = [ΨnP

∗σ(N ij
n−1Xn−1) + ⟨σ(Xn−1), ei⟩⟨ΨnP

∗ei, ej⟩ej]/cn(4.53)

σ(J i
nXn) = [ΨnP

∗σ(J i
n−1Xn−1) + ⟨σ(Xn−1), ei⟩ΨnP

∗ei]/cn (4.54)

σ(Gi
nXn) = [ΨnP

∗σ(Gi
n−1Xn−1) + z∆n ⟨σ(Xn−1), ei⟩ΨnP

∗ei]/cn (4.55)

σ(I inXn) = [ΨnP
∗σ(I in−1Xn−1) + yn−1⟨σ(Xn−1), ei⟩ΨnP

∗ei]/cn. (4.56)

4.2.2.2 Variance Estimation

The filtering procedure introduced by [29] utilizes the change of measure technique,

however, it does not provide an MLE for the noise variance as the corresponding mea-

sures with different variances for the diffusion process are not absolutely continuous

[42]. In [29], the filtering equations are derived under the assumption of known vari-

ance by scaling the process accordingly. In real-world scenarios, the noise variance

is not known. On the other hand, [42] explains how to obtain the MLE of the noise

variance in a robust filtering setting. Similarly, we provide the ML estimate of the

noise variance of the model in the EM algorithm.

Denote by ς2 the noise variance, then the process in (4.43), has a variance ς2/∆.

Including ς as a new parameter to be estimated, our new parameter set becomes

θ∗ = (a∗ij, g∗i, κ∗, ς∗, 1 ≤ i, j ≤ K} with the corresponding probability measure

P∗ and the updated parameter set is θ = {aij, gi, κ, ς, 1 ≤ i, j ≤ K} with respective

probability measure Pθ. Then consider the Radon-Nikodym derivative
dPθ

dPθ∗
, we have

the likelihood ratio:

dPθ

dPθ∗
=

N∏
n=1

1√
2πς2/∆

exp
Å
−|z∆n − κ(⟨g,Xn−1⟩ − yn−1)|2

2ς2/∆

ã
1√

2πς∗2/∆
exp
Å
−|z∆n − κ∗(⟨g∗, Xn−1⟩ − yn−1)|2

2ς∗2/∆

ã .
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The filtered log-likelihood of the discrete time model can be written as:

L̂(θ, θ∗) = E

ï
log

dPθ

dPθ∗
|Yn

ò
=− N

2
log(

ς2

∆
) (4.57)

+
ς2

∆

Å
|z∆n |2 − 2|z∆n |κg⟨Xn−1, ei⟩+ 2κz∆n yn−1

+ κ2g2⟨Xn−1, ei⟩ − 2κ2g⟨Xn−1, ei⟩yn−1 + κ2y2n−1

ã
+R̂(θ∗),

where R̂(θ∗) is independent from aij, gi, κ, ς .

Using Equations from (4.44) to (4.47), note that

N̂ ij
n = E(N ij

n |Yn) =
⟨σ(N ij

n Xn), 1⟩
⟨σ(Xn), 1⟩

, Ĵ i
n = E(J i

n|Yn) =
⟨σ(J i

nXn), 1⟩
⟨σ(Xn), 1⟩

,

Ĝi
n = E(Gi

n|Yn) =
⟨σ(Gi

nXn), 1⟩
⟨σ(Xn), 1⟩

and Î in = E(I in|Yn) =
⟨σ(I inXn), 1⟩
⟨σ(Xn), 1⟩

.

We rewrite (4.57) as

L̂(θ, θ∗) =− N

2
log

Å
ς2

∆

ã
(4.58)

+
ς2

∆

Å K∑
i=1

(κ2g2Ĵ i
N − 2κ2gÎ iN − 2κgĜi

N)

+
N∑

n=1

|z∆n
2
+ κ2y2n−1 + 2κz∆n yn−1|

ã
+R̂(θ).

Maximizing (4.58) with respect to ς , we obtain the following estimate for ς:

ς̂2 =− ∆

N

Å K∑
i

(κ2(gi)2(Ĵ i
N)

2 − 2κ2giÎ iN − 2κgiĜi
N)

+
N∑

n=1

|z∆n |
2
+ κ2|yn−1|2 + 2κ|yn−1z

∆
n |
ã

where, κ̂ =
C

D
with

C =
N∑
i

|yn−1z
∆
n | −

K∑
i

Î iNĜ
i
N

Ĵ i
N

, D =
K∑
i

(Î iN)
2

Ĵ i
N

−
N∑
n

|yn−1|2.
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and

ĝi =
κ̂−1Ĝi

N + Î iN

Ĵ i
N

.

The update from a∗ji to âji does not change and it is:

âji =
N̂ ij

N

Ĵ i
N

.
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CHAPTER 5

SIMULATION STUDY

5.1 Simulation

In this section, we evaluate the performance of proposed robust filtering methodology

with the existing methodology in the literature. More specifically, we compare the

cases with robust filters and continuous time filters, which are required in the E-

step of the parameter estimation of the OU model. For the numerical application,

we discretize the continuous time filters given in (4.2.1) by both Euler and Milstein

approaches. As for the robust filters, we use the discrete time recursive filters given

in (4.2.2.1). We compare their performances from different aspects. These can be

phrased in three questions as follows:

a) How does the step size affect the performance of the EM algorithm?

b) How does the drift affect the performance of the EM algorithm?

c) How does the volatility affect the performance of the EM algorithm?

This examination is essential for refining the methods and establishing a connection

between theoretical concepts and their practical implementation.

Algorithm

Step 1 We fix a parameter set θ, an initial distribution π, some noise variance ς and
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generate trajectories of size N with step size ∆ for the Markov chain X and

Brownian motion W . Then, we obtain the corresponding observation series y.

Step 2 We run the EM algorithm and obtain estimates for the hidden states, as well as

for the parameters following steps:

i) Initialize the algorithm with some parameter set θ0.

ii) Normalize the data by ς .

iii) Obtain the filtered estimates of the quantities of interest.

iv) Compute θn+1.

v) Terminate if |θn+1−θn|
|θn| are below the termination tolerance; else return to

step N.

Numerical approximations have been developed with the unavailability of the so-

lutions of SDEs. Usually, these methods rely on time discretization with points

0 = t0 < t1 < ... < tn < ... < tN = T within the time interval [0, T ], employ-

ing a step-size ∆ = tn+1 − tn.

It is possible to use time discretizations that are not necessarily based on a fixed step-

size but could instead be random. However, the research by [18] has demonstrated

that not all traditional or heuristic time discretization methods for stochastic differ-

ential equations (SDEs) converge meaningfully to the solution process as the step

size ∆ approaches zero. As a result, a systematic approach is necessary to choose an

effective and trustworthy numerical method to overcome the problem.

The most widely used time discretization methods of SDEs are Euler-Maruyama

method and Milstein method.

a) Euler-Maruyama discretization: To obtain numerical solutions for underlying

differential equations, we start with Euler-Maruyama discretization, which is also

known as naive discretization. This method is based on the first order approximation.

As an example, we discretize the stochastic filter σ(X) of the state process of the MC

with Euler Maruyama scheme given as:

σ(Xn) = σ(Xn−1) + Aσ(Xn−1)∆ + κBn−1σ(Xn−1)(yn − yn−1). (5.1)

54



b) Milstein discretization: The Milstein method is a numerical approximation tech-

nique used to solve stochastic differential equations (SDEs) that improve upon the

accuracy of the Euler-Maruyama method. The method includes a second-order cor-

rection term derived from the stochastic Taylor series expansion of the solution to the

given SDE, which is obtained by applying Ito’s lemma. This correction term allows

for a more accurate approximation of the solution, particularly for SDEs with strong

drift and moderate to large diffusion coefficients. To obtain the Milstein method, we

need to retain terms up to the second order of the Brownian increment. The differen-

tial form of the Milstein method for the stochastic filter σ(X) of the state process of

the MC is given by:

σ(Xn) =σ(Xn−1) + Aσ(Xn−1)∆ + κBn−1σ(Xn−1)(yn − yn−1) (5.2)

+
1

2
[(yn − yn−1)

2 −∆]κ2B2
n−1σ(Xn−1).

c) Robust discretization: We use the discrete time filters that are based on the robust

filters discretization. To avoid numerical issues, we use the normalized ones as given

in (4.53) to (4.56). Recall the normalized discrete time filter for the state process X

σ(Xn) = ΨnP
∗σ(Xn−1)/cn. (5.3)

We consider a 3-state MC with the parameters listed in Table 5.1. N represents the

number of data points, and ∆ denotes the step-size.

Table 5.1: Parameters used in the algorithm

a12 a13 a21 a23 a31 a32 g1 g2 g3 ς κ T ∆ N

0.3 0.4 0.4 0.3 0.3 0.2 -6 0.2 5 2 5 20 1/250 T/∆

We generate N number of observations y1, ..., yN by fixing the parameter set θ, initial

distribution π, and noise variance ς2Y for the Markov chain X . We start the algorithm

with the initial values equal to the half of the true values and set the tolerance level

0.01. The evolution of the filtered estimate of Markov chain X can be seen in Figure

5.1.
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Figure 5.1: Markov chain and noisy observation process

5.1.1 How does ∆ affect the performance of the EM algorithm?

In this part, we examine the effect of changes in step size on the EM algorithms. We

compare the results for ∆ = 1/80 and ∆ = 1/250. We assume that the volatility is

known and equal to 2. The rest of the parameters used in the simulation is the half of

the parameters given in Table 5.1.

Figure 5.2: EM estimates vs. true chain, ∆ = 1/80
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Figure 5.3: Evolution of parameter estimates for A, g and κ, ∆ = 1/80

Figure 5.4: EM estimates vs. true chain, ∆ = 1/250
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Figure 5.5: Evolution of parameter estimates for A, g and κ, ∆ = 1/250

Applying different step sizes, the algorithm with robust filters has the best perfor-

mance among others, by following a clear track to the true chain as seen in Figures

5.2 and 5.4. On the other hand, Euler discretized model shows the worst performance.

More specifically, it cannot catch the regime switches in higher step size application

and thus, does not give good results in parameter estimates. Discretized robust filter

setting shows the best convergence to the true parameter set in parameter estimation

results, see Figures 5.3 and 5.5. In general, when we decrease the step size, perfor-

mance of all models increases and the number of iterations decreases.

5.1.2 How does drift (relative to noise variance) affect the performance of the

EM algorithm?

In this part, we want to see how drift variations affect the performance of the algo-

rithm with different numerical methods. We use the step size ∆ = 1/250 and assume

that the standard deviation is known. We use the same parameter set given in Table

5.1. First, we start with a drift such that it provides a clear trend in the data process

as seen in the bottom of Figure 5.1. Then, we make the trend less obvious, i.e. the
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drift part is dominated by the noise part, which means that our data process shows

flatter process with using drift parameters as g = (−1 0.2 1). When data process

does not show any clear trend or information and so is dominated by the noise, the

EM algorithm with Euler and Milstein approximations have a failure to show rea-

sonable results, see Figure 5.6. On the contrary, the discretized robust filter scheme

gives a better result by tracking the true chain and provides closer results in parameter

estimates compared to other EM algorithms. In detail, it provides very close result

drift estimates to true drift parameters. However, it overestimates the entries of the

generator matrix and κ value than true parameters, see Figure 5.7.

Figure 5.6: EM estimates vs. true chain, g = [-1 0.2 1]

5.1.3 How does the noise variance affect the performance of the EM algorithm?

The final performance comparison is based on the noise variance effect. So far, we

have assumed that the variance is known and EM algorithm starts with true parameter.

Here, we start the EM algorithm with different standard deviation, ς = 1 rather than

true standard deviation, ς = 2. The Figure 5.8 clearly shows the effect of variance

estimation. The continuous-time filter with different approximations fails when start-
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Figure 5.7: Evolution of parameter estimates for A, g and κ, g =[-1 0.2 1]

ing with different noise variance, while the robust filter performs well and produces

results that are very close to the true Markov chain.

The Figure 5.9 shows the evolution of the parameter estimates for A, g , ς and κ that

are obtained from the robust filters. All parameters exhibit the convergence to the true

parameters. The only exception is the final estimate of the volatility which is slightly

higher than the true parameter.
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Figure 5.8: EM estimates vs. true chain

Figure 5.9: Evolution of parameter estimates for A, g and κ
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CHAPTER 6

DATA APPLICATION

In this chapter, a real data set is employed to illustrate the implementation of the pro-

posed model. We assume that the implied liquidity series provide noisy information

on the true market liquidity level. Overall, we aim to evaluate the true market liquid-

ity through the use of implied liquidity as a proxy. First, we describe the data and

explain how to derive it. After applying our proposed model to the data, we evaluate

the results based on in sample and out of sample results. Specifically, the number of

states are determined based on using AIC and BIC values in the sample results. In

out of sample testing, we evaluate the performance of the proposed model according

to point forecast and interval forecast results.

6.1 Data

The data contains the daily bid and ask prices of European call option written on the

S&P 500 index in the period from the 1st January 2002 to the 1st August 2022. The

data is retrieved from ivolatility.com and it also includes daily value of underlying

asset S&P 500 index (ivolatility.com), daily value of 3-month US Treasury bill rate

(fred.stlouis.org) and daily value of implied volatility (ivolatility.com) for the same

period.

We have a large data set of 34,438,878 observations. Following a similar procedure

in [1], we produce the implied liquidity series. In the data set, we have daily option

prices with various strikes and maturities. Denote by n the nth day of the data period

n ∈ 1, ..., N . On each day of the sample period, we choose an option based on two
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criteria: (closest to) 1-year ATM call options and the highest trading volume if several

options are available the same day after applying the first criteria. After extracting the

option series, the goal is to find the implied liquidity parameter Ln that best matches

the theoretical bid, and ask prices with the observed bid, and ask prices at day n.

Accordingly, we obtain the implied liquidity by minimizing the squared error (SE)

between the theoretical bid and ask prices (aL,n, bL,n) and the observed market bid

and ask prices (an, bn). That is, for each day of the sample period, we solve the

following minimization problem:

min
Ln

SEbid,ask(Ln) = (bn − bLn)
2 + (an − aLn)

2

s.t. Ln ≥ 0.

We repeat this procedure on each day of the data series, and obtain the implied liquid-

ity series. Note that, we multiply the resulting series with 100 to obtain the values in

basis points. The the logarithm of the daily implied liquidity series is plotted in Figure

6.1. Following its definition, higher values of implied liquidity correspond to lower

liquidity in the underlying market and vice versa. Furthermore, we plot the possible

states according to corresponding mean and variance in sub-periods in Figure A.1 in

Appendix A.1. According to the heuristic look, the data set may have two or three

states.

Figure 6.1: Log of implied liquidity (basis points)

6.2 In sample results

The initial parameters obtained through least square estimation are used as starting

points of the EM algorithm. The first set of initial parameters are obtained by applying
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least square estimation to the first 100 observations of the data set. The second set of

initial parameters are obtained by applying least square estimation to the entire data

set. Both cases assume a 1-state setting, with the entries of the generator matrix set

to 1/K, where K represents the number of states.

Table 6.1: Initial parameters used in empirical analysis

1. way 2. way 3. way
ginit 2.077 2.8564 2.5
κinit 1.29 1.92 1
ςinit 0.7248 0.9271 0.1

We observe that the convergence of the algorithm is achieved with different initial

parameters for both 2-state and 3-state. When we assign 1/K to aij for i ̸= j, the

algorithm cannot detect the third state. Thus, we use the following initial values in

Table 6.2 for aijs.

Table 6.2: The initial values of the generator matrix

a12 a13 a21 a23 a31 a32

0.2 0.3 0.3 0.2 0.2 0.2

Figure 6.2: Filtered states: 2-state MC (top) and 3-state MC (bottom)

We apply the EM algorithm to the whole data set and get the following results. Al-

though the 2- and 3-state MCs follow a similar trajectory until 2013, the 2-state MC

seem not to capture the state of the underlying economic environment after then.
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Figure 6.3: Evolution of parameter estimates for A, g , ς and κ
Top: 2-state MC and bottom: 3-state MC

Table 6.3: Parameter estimates

â12 â13 â21 â23 â31 â32

2-state MC 0.487 0.064
3-state MC 0.542 0.000 0.109 0.222 0.000 0.222

ĝ1 ĝ2 ĝ3 κ̂ ς̂

2-state MC 1.893 0.722 20.057 4.277
3-state MC 1.934 0.959 0.428 18.658 3.727

While 2-state model represent the ’low’ and ’normal’ liquidity level, 3-state model

has ’low’, ’intermediate’ and ’high’ liquidity levels.

It is natural to expect that any sound measure of market liquidity should reflect the

changes in market liquidity due to changes in the underlying economic policy. It

is observed in Figure 6.1 that the implied liquidity series is successful in achieving

this goal. We provide the filtered trajectory of the Markov chain, representing the

unknown true market liquidity level, in Figure 6.2. State transitions observed in the

filtered trajectory follow the changes in the economic policy.

Naturally, the state of the market liquidity is highly dependent on the underlying

monetary policy. In particular, the Federal Reserve (Fed) started cutting interest rates

in 2002 in an effort to stimulate the economy following the 2001 recession. This

increase in liquidity helped to spur economic growth (see region A1 (B1) of Figure
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6.2).

However, by 2005, inflation was starting to become a concern and the Fed began rais-

ing interest rates in order to keep it under control. At this time, the housing market

was experiencing a bubble due to the rise of subprime mortgages, and the use of com-

plex financial instruments and leverage were on the rise, which would eventually lead

to the global financial crisis of 2008, see [41, 36, 7]. The subprime mortgage market

began to experience significant stress in 2007, with rising default rates and declin-

ing housing prices leading to significant losses for banks and financial institutions.

The crisis continued to escalate and in response, central banks around the world, in-

cluding the Fed, took several interventions such as cutting interest rates, providing

liquidity support, implementing bailout and rescue packages, and implementing reg-

ulatory reforms. All these reasons led to decrease in the market liquidity level since

2005 and it experienced the lowest level between the period mid 2005 and mid 2009.

The financial crisis erupted in 2007 and continued to escalate, and in response, cen-

tral banks worldwide, including the Fed, took several interventions, such as cutting

interest rates, providing liquidity support, implementing bailout and rescue packages,

and implementing regulatory reforms. The money injections increased the liquidity

level slightly in 2008 but were not enough to prevent the financial crisis. According

to [7], one of the reasons of the inefficiency of the liquidity injections is that market

participants were reluctant to use the discount window with the idea of not giving a

bad credit signal. While the liquidity shortage during the mid-2005 and mid-2009 was

not immediately reflected in the S&P 500 index, it is present in the implied liquidity

series. This period is reflected in the region A2 (B2) of Figure 6.2.

By 2009, both 2- and 3-state MCs follow a trajectory accordance with the underlying

economic environment. In response to the 2008 financial crisis, the implementation

of a series of large-scale asset purchases, commonly referred to as quantitative easing

(QE), was carried out by the Fed to decrease long-term interest rates and stimulate the

economy. This led to a rapid expansion of the Fed’s balance sheet, rising from $800

billion in 2008 to $4.5 trillion by 2014, as seen in the region (B3) of Figure 6.2. The

efforts of governments and central banks to stabilize financial markets and restore

economic growth changed the market structure, leading to a more liquid period, see

region A3 (B3) of Figure 6.2.
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In 2013, the Fed announced that it would begin to taper its asset purchases and reduce

its monthly bond purchases, eventually ending its QE program in 2015. However,

three QE programs carried the market high liquidity level end of 2013 and beginning

of 2014. From 2014 to 2018, the Fed kept the size of its balance sheet steady, thus

tapering program had limited effect on the market liquidity. Overall, the period be-

tween 2014 and 2018 was characterized by high market liquidity level, which is seen

in the region (B4) of Figure 6.2.

Over the period of 2017-2018, the Fed raised interest rates several times and reduced

the size of its balance sheet through a process of gradual asset runoff, which led

to decrease in the market liquidity level as seen in the region (B5) of Figure 6.2.

However, in response to the economic challenges posed by the COVID-19 pandemic,

the Fed paused its interest rate hikes and began to expand its balance sheet again [9],

which led to again high market liquidity level as seen in (B6) of Figure 6.2.

As this state of the liquidity is never seen in the past, the 2-state MC is not able to

capture it. On the other hand, the 3-state MC reflects the gradually the high liquidity

level in the economy.

6.2.1 Model selection and error analysis

The choice of the number of states for an HMM-based model can be made using

a penalized likelihood approach, such as the Akaike information criterion (AIC) or

Bayesian Information Criterion (BIC). This method is a standard procedure when

comparing nested models, as it takes into account both the number of model parame-

ters and the log-likelihood function of the model and applies a penalty term to models

with more parameters. This method is commonly used in literature, as cited in refer-

ences [53, 40, 58, 38]. The AIC is calculated using the log-likelihood function of the

model, as well as the number of model parameters. Then AIC and BIC models are

given respectively:

AIC = 2s− 2log(L(θ))

BIC = slog(n)− 2log(L(θ))
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where L is the likelihood function for the model, N is the number of observations,

and s denotes the number of parameters. The lower the AIC and BIC values, the

better the model is considered to be among the compared the models.

To apply them, we utilize a likelihood function for the parameter set θ = (aij, gi, ς, κ)

given by

L(θ) =
N∏

n=1

1√
2πς̂2∆

exp

Ç
−((yn+1 − yn − κ̂(⟨ĝ, X̂n⟩ − yn)∆)2

2ς̂2∆

å
.

Table 6.4 shows the calculated results of AIC and BIC for 2- and 3-state models.

Based on the AIC and BIC results, it has been determined that the best performing

model for capturing the dynamics of the market liquidity level is the 3-state model.

The one-step ahead prediction of the implied liquidity is calculated as follows

E[yn+1|Yn] = E[yn + κ(g(Xn)− yn)∆ + ςdWn|Yn] (6.1)

ŷn+1 = yn + κ̂(ĝ(X̂n)− yn)∆ (6.2)

The parameter estimates that are used in the one-day ahead prediction can be seen in

Table 6.3 and Figure 6.3. 2-state MC estimates the κ and ς of the model higher than

the 3-state MC model. State of the market liquidity cannot change from low to high or

high to low since it changes gradually and needs to visit the intermediate level, namely

medium level. This is also supported from 3-state MC model which gives the zero

probability for the transitions between these states. One-day ahead prediction results

using parameter estimates from whole data set can be seen in Figure 6.4. According

to heuristic look at the figure, the predictions of 3-state model fits the actual data

better than 2-state model. This result is also supported by the model selection results.

In order to evaluate the performance of the HMM-based model, the goodness of fit of

the forecasts is measured using several error metrics such as the absolute mean error

(MAE), mean absolute percentage error (MAPE), relative absolute error (RAE), and

root mean square error (RMSE). These metrics are calculated using the observed data

values yn and the one-step ahead predictions ŷn at each time step n, as well as the

sample mean ȳ and sample size N of the underlying process. The formulas for these
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Figure 6.4: Fitted value vs real data: 2-state MC (top) and 3-state MC (bottom)

error metrics are as follows:

MAE =
1

n

N∑
n=1

|ŷn − yn|, MAPE =
1

n

N∑
n=1

| ŷn − yn
yn

|

RAE =

∑N
n=1 |ŷn − yn|∑N
n=1 |yn − ȳ|

, RMSE =

Ã
1

n

N∑
n=1

(ŷn − yn)2

Table 6.4 shows the calculated results of goodness of fit tests. AIC and BIC for 2-

and 3- state models. Based on the AIC and BIC results, it has been determined that

the best performing model for capturing the dynamics of the market liquidity level is

the 3-state model, which is consistent with the results of the error analysis presented

in the same table.

Table 6.4: Results of error analysis - in sample results

MAE MAPE RAE RMSE AIC BIC
2-state MC 0.3978 2.9742e-05 0.6778 0.4556 32.9810 101.3815
3-state MC 0.1270 1.5859e-05 0.2671 0.2394 12.6006 84.8348

70



6.3 Out of sample results

We assess the effectiveness of our model in predicting market liquidity by comparing

their one-day-ahead point and interval forecasts to the actual market liquidity data

over the period of January 2, 2002 to June 11, 2018 to predict the period from June

16, 2018 to August 12, 2022. We use two different methods for this analysis: a static

approach where we use the estimated models for the entire out-of-sample period, and

a dynamic approach where we use a recursive window technique to re-estimate the

parameters after each day. The estimation process in the recursive window approach

starts from a fixed date and new observations are incrementally added to the estima-

tion period, one by one.

The dynamic point forecast results of the models can be seen in the Figure 6.6. To

measure the average prediction errors of the point forecasts, we calculate the MAE,

MAPE, RAE and RMSE for the one-day-ahead forecasts. The results for static and

dynamic approaches are given in the Table 6.5. The 3-state model outperforms the

2-state model in all measure tests for both static and recursive approaches.

Figure 6.5: Evolution of parameter estimates for A, g , ς and κ
2-state MC (top) and 3-state MC (bottom)

Furthermore, we evaluate the accuracy of the models through interval forecasting.

The literature provides various methods for evaluating interval forecasts, see e.g.,

[10, 21, 16]. Here, we use the approach proposed by [16] to generate interval forecasts
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Figure 6.6: 1-day ahead prediction: 2-state MC (top) and 3-state MC (bottom)

Figure 6.7: Interval forecast: 2-state MC (top) and 3-state MC (bottom)
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Table 6.5: Results of error analysis - out of sample results

Static MAE MAPE RAE RMSE
2-state MC 0.6801 1.9751e-02 1.1167 0.8341
3-state MC 0.3963 1.5580e-02 0.9252 0.4417
Recursive MAE MAPE RAE RMSE
2-state MC 0.4233 1.7834e-04 0.7267 0.6479
3-state MC 0.1977 1.3588e-04 0.4253 0.3465

for our models. We set the confidence interval values at α = 0.95 and α = 0.99, and

assess the extent to which the forecasted intervals encompass the actual observations

in the out-of-sample period. The results of the interval forecasts indicate that the 3-

state model performs better than the 2-state model, both in the static and recursive

estimation, as shown in Figures A.4 (in Appendix A.2) and 6.7, respectively. The

other static forecast results can be seen in figures in Appendix A.2.
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CHAPTER 7

CONCLUSION

In this thesis, we model the implied liquidity as a continuous-time finite state MC-

modulated exponential OU process under partial information setting. The main moti-

vation is based on the idea that any sound measure of market liquidity should reflect

the policy changes, for example, from quantitative easing to tightening or financial

market regime shifts from bullish to bearish market conditions. Hence, we assume

that the implied liquidity series provide noisy information on the true market liquidity

level, which is unobservable. To estimate the unknown parameters, we apply the EM

algorithm. The E-step of the algorithm requires the derivation of finite dimensional

filters for the quantities present in the filtered loglikelihood function. To this end,

we first review the existing EM algorithm for the OU process and provide detailed

proofs for the results. In order to avoid numerical issues and make the algorithm to

function, we use filters that have a continuous dependence on the observations. The

corresponding filters are known as robust filters. Instead of directly discretizing con-

tinuous time filters, we discretize the robust filters. This approach provides a discrete

time setting however it has an explicit approximation of the continuous time filters.

This helps us to work under the discrete time setting and also enable us to obtain the

variance estimate of the model within the EM algorithm.

We evaluate the performance of the algorithm and compare it to existing alternatives

in the literature using an extensive simulation study. The performance evaluation

is based on the sensitivity to changes in step size, drift, and volatility parameters.

According to results, the robust filters outperformed the alternatives.

In our empirical analysis, we analyze both in-sample and out-of-sample test results
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using statistical metrics, and find that the three-regime model performs better than

the two-regime model in capturing the economic dynamics that explain the market

liquidity level in financial markets.

We put forward and empirically tested a new way of estimating and predicting liquid-

ity levels in the financial markets. This approach provides a quantitative methodology

that supports economic interpretation of the liquidity proxy. Knowing true market

liquidity levels can be useful for market participants. The proposed modeling and

estimation set up can be effectively exploited for different financial assets that follow

mean reverting process. Based on our results, we suggest that further analysis of data

with different frequencies should be carried out to gain insights about liquidity risk

over different time periods, potentially involving the inclusion of new drivers, fac-

tors, and determinants of liquidity in the filtering experiments. This may require the

tweaking of the HMM-driven OU process to accommodate new inputs leading to new

filters. Also, long term prediction can be applied in the future work.
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APPENDIX A

APPENDICES

A.1 Possible states in the data

Figure A.1: Possible states in the data

A.2 Results of static out of sample test

Figure A.2: Evolution of parameter estimates for A, g , ς and κ
2-state MC (top) and 3-state MC (bottom)
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Figure A.3: 1-day ahead prediction: 2-state MC (top) and 3-state MC (bottom)

Figure A.4: Interval forecast: 2-state MC (top) and 3-state MC (bottom)

84



CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Yerli, Cigdem

Nationality: Turkish (TC)

EDUCATION

Degree Institution Year of

Graduation

PhD. Financial Mathematics, IAM, METU, Turkiye 2023

M.S. Finance and Investment, Business School, Durham University, UK 2013

B.S. Business Administration, Cankaya University, Turkiye 2011

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2015 - Bartin Vocational School/Bartin University Lecturer

PUBLICATIONS
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Fakültesi Dergisi, 40(2), 419-439.

- YERLI, C., & EKSI-ALTAY, Z. and KESTEL, S. (2023). The On the information

content of implied liquidity measure: Evidence from S&P 500 index options. It has

been submitted to Finance Research Letters.

85



AWARDS

- TUBITAK 2214-A, Visting the Institute for Statistics and Mathematics at WU from

04.2022 to 04.2023, Vienna, Austria.

- YLSY 2011, M.Sc, in Finance and Investment, Durham Business School, Durham,

UK.

86


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Introduction
	Motivation and contribution
	Structure of the thesis

	REVIEW OF MARKET LIQUIDITY MEASURES
	Introduction
	Volume based liquidity measures
	Price impact based liquidity measures
	Transaction cost based liquidity measures


	PRELIMINARIES
	Conic Finance Theory
	The Ornstein-Uhlenbeck Process
	Exponential Ornstein-Uhlenbeck Process


	MODEL AND ESTIMATION
	Model setting and notation
	EM algorithm for the current setting

	Filtering
	Continuous time filters
	Robust Filters
	Discrete time filters
	Variance Estimation



	SIMULATION STUDY
	Simulation
	How does  affect the performance of the EM algorithm?
	How does drift (relative to noise variance) affect the performance of the EM algorithm?
	How does the noise variance affect the performance of the EM algorithm?


	DATA APPLICATION
	Data
	In sample results
	Model selection and error analysis

	Out of sample results

	CONCLUSION
	REFERENCES
	APPENDICES
	APPENDICES
	Possible states in the data
	Results of static out of sample test

	CURRICULUM VITAE

